Advertisements
Advertisements
प्रश्न
Find a vector of magnitude 20 units parallel to the vector `2hati + 5hatj + 4hatk`.
उत्तर
Given vector, `veca = 2hati + 5hatj + 4hatk`
`|veca| = sqrt(2^2 + 5^2 + 4^2)`
= `sqrt(4 + 25 + 16)`
= `sqrt(45)`
= `3sqrt(5)`
∴ `hata = veca/|veca|`
= `(2hati + 5hatj + 4hatk)/(3sqrt(5)`
Thus, the vector of magnitude 20 units and parallel to the `veca` is:
= `± 20. hata`
= `± (20(2hati + 5hatj + 4hatk))/(3sqrt(5))`
= `± (40hati)/(3sqrt(5)) ± (100hatj)/(3sqrt(5)) ± (80hatk)/(3sqrt(5))`
= `± (8sqrt(5))/3hati ± (20sqrt(5))/3hatj ± (16sqrt(5))/3hatk`
APPEARS IN
संबंधित प्रश्न
Find a vector `veca` of magnitude `5sqrt2` , making an angle of `π/4` with x-axis, `π/2` with y-axis and an acute angle θ with z-axis.
Find `|veca| and |vecb|`, if `(veca + vecb).(veca -vecb) = 8 and |veca| = 8|vecb|.`
Find the magnitude of two vectors `veca and vecb`, having the same magnitude and such that the angle between them is 60° and their scalar product is `1/2`.
If `veca` is a nonzero vector of magnitude 'a' and λ a nonzero scalar, then λ`veca` is unit vector if ______.
If `veca, vecb, vecc` are mutually perpendicular vectors of equal magnitudes, show that the vector `veca + vecb+ vecc` is equally inclined to `veca, vecb` and `vecc`.
If `veca, vecb, vecc` are mutually perpendicular vectors of equal magnitudes, find the angle which `veca + vecb + vecc`make with `veca or vecb or vecc`
Represent the following graphically:
(i) a displacement of 40 km, 30° east of north
(ii) a displacement of 50 km south-east
(iii) a displacement of 70 km, 40° north of west.
If the sum of two unit vectors is a unit vector prove that the magnitude of their difference is `sqrt(3)`.
If \[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} = 4 \hat{i} - 2 \hat{j} + 3 \hat{k} \text { and } \vec{c} = \hat{i} - 2 \hat{j} + \hat{k} ,\] find a vector of magnitude 6 units which is parallel to the vector \[2 \vec{a} - \vec{b} + 3 \vec{c .}\]
Find a vector \[\vec{r}\] of magnitude \[3\sqrt{2}\] units which makes an angle of \[\frac{\pi}{4}\] and \[\frac{\pi}{4}\] with y and z-axes respectively.
A vector \[\vec{r}\] is inclined at equal angles to the three axes. If the magnitude of \[\vec{r}\] is \[2\sqrt{3}\], find \[\vec{r}\].
Write the length (magnitude) of a vector whose projections on the coordinate axes are 12, 3 and 4 units.
Write a vector in the direction of vector \[5 \hat{i} - \hat{j} + 2 \hat{k}\] which has magnitude of 8 unit.
Find a vector \[\overrightarrow{a}\] of magnitude \[5\sqrt{2}\], making an angle of \[\frac{\pi}{4}\] with x-axis, \[\frac{\pi}{2}\] with y-axis and an acute angle θ with z-axis.
If in a ∆ABC, A = (0, 0), B = (3, 3 \[\sqrt{3}\]), C = (−3\[\sqrt{3}\], 3), then the vector of magnitude 2 \[\sqrt{2}\] units directed along AO, where O is the circumcentre of ∆ABC is
Find all vectors of magnitude `10sqrt(3)` that are perpendicular to the plane of `hat"i" + 2hat"j" + hat"k"` and `-hat"i" + 3hat"j" + 4hat"k"`
Prove that in a ∆ABC, `sin"A"/"a" = sin"B"/"b" = sin"C"/"c"`, where a, b, c represent the magnitudes of the sides opposite to vertices A, B, C, respectively.
Find a vector of magnitude 6, which is perpendicular to both the vectors `2hat"i" - hat"j" + 2hat"k"` and `4hat"i" - hat"j" + 3hat"k"`.
If the sum of two-unit vectors is a unit vector, then the magnitude of their difference is
Two equal forces acting at a point with an angle of 60° between them, if the resultant is equal `30sqrt(3)N`, the magnitude of the force will be
Which of the following statements is false about forces/ couple?
In a triangle ABC three forces of magnitudes `3vec(AB), 2vec(AC)` and `6vec(CB)` are acting along the sides AB, AC and CB respectively. If the resultant meets AC at D, then the ratio DC : AD will be equal to :