English

If θ is the angle between two vectors a→ and b→, then a→.b→≥0 only when ______. - Mathematics

Advertisements
Advertisements

Question

If θ is the angle between two vectors `veca` and `vecb`, then `veca . vecb >= 0` only when ______.

Options

  • `0 < θ < pi/2`

  • `0 ≤ θ ≤ pi/2`

  • `0 < θ < pi`

  • `0 ≤ θ ≤ pi`

MCQ
Fill in the Blanks

Solution

If θ is the angle between two vectors `veca` and `vecb`, then `veca . vecb >= 0` only when `underline(0 ≤ θ ≤ pi/2)`.

Explanation:

Let θ be the angle between two vectors, `veca` and `vecb`.

Then, without loss of generality, `veca`,`vecb` are non zero vectors so that `|veca|,|vecb|` are positive

It is known that `veca × vecb = |veca||vecb|cosθ`

a × b ≥ 0

`|veca||vecb|cosθ≥0`

cosθ ≥ 0

`0 ≤ θ ≤ (π/2)`

So, a × b ≥ 0 when `0 ≤ θ ≤ (π/2).`

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Vector Algebra - Exercise 10.5 [Page 459]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 10 Vector Algebra
Exercise 10.5 | Q 16 | Page 459

RELATED QUESTIONS

Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are -2, 1, -1, and -3, -4, 1.


Write the position vector of the point which divides the join of points with position vectors `3veca-2vecb and 2veca+3vecb` in the ratio 2 : 1.


Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector

`2hati+3hatj+4hatk` to the plane `vecr` . `(2hati+hatj+3hatk)−26=0` . Also find image of P in the plane.


If `bara, barb, barc` are position vectors of the points A, B, C respectively such that `3bara+ 5barb-8barc = 0`, find the ratio in which A divides BC.


`veca and -veca` are collinear.


Find the direction cosines of the vector `hati + 2hatj + 3hatk`.


Find the direction cosines of the vector joining the points A (1, 2, -3) and B (-1, -2, 1) directed from A to B.


Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are  `hati + 2hatj - hatk` and `-hati + hatj + hatk`  respectively, externally in the ratio 2:1.


Find a vector of magnitude 4 units which is parallel to the vector \[\sqrt{3} \hat{i} + \hat{j}\]


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\]  \[\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k} \text{ and } \vec{b} = 4\hat{i} + 4 \hat{j} - 2\hat{k}\]


Find the angles which the vector \[\vec{a} = \hat{i} -\hat {j} + \sqrt{2} \hat{k}\] makes with the coordinate axes.


If  \[\hat{a} \text{ and } \hat{b}\] are unit vectors inclined at an angle θ, prove that \[\cos\frac{\theta}{2} = \frac{1}{2}\left| \hat{a} + \hat{b} \right|\] 


 If  \[\hat{ a  } \text{ and } \hat{b }\] are unit vectors inclined at an angle θ, prove that

 \[\tan\frac{\theta}{2} = \frac{\left| \hat{a} -\hat{b} \right|}{\left| \hat{a} + \hat{b} \right|}\] 


If \[\vec{a,} \vec{b,} \vec{c}\] are three mutually perpendicular unit vectors, then prove that \[\left| \vec{a} + \vec{b} + \vec{c} \right| = \sqrt{3}\]


If \[\vec{a} = 2 \hat{i} - \hat{j} + \hat{k}\]  \[\vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]  \[\vec{c} = \hat{i} + 3 \hat{j} - \hat{k}\] find λ such that \[\vec{a}\] is perpendicular to \[\lambda \vec{b} + \vec{c}\]  


If either \[\vec{a} = \vec{0} \text{ or } \vec{b} = \vec{0}\]  then \[\vec{a} \cdot \vec{b} = 0 .\] But the converse need not be true. Justify your answer with an example. 


Show that the vectors \[\vec{a} = 3 \hat{i} - 2 \hat{j} + \hat{k} , \vec{b} = \hat{i} - 3 \hat{j} + 5 \hat{k} , \vec{c} = 2 \hat{i} + \hat{j} - 4 \hat{k}\] form a right-angled triangle. 


If \[\vec{a} = 2 \hat{i} + 2 \hat{j} + 3 \hat{k} , \vec{b} = - \hat{i} + 2 \hat{j} + \hat{k} \text{ and } \vec{c} = 3 \hat{i} + \hat{j}\] \[\vec{a} + \lambda \vec{b}\] is perpendicular to \[\vec{c}\] then find the value of λ. 


Find the angles of a triangle whose vertices are A (0, −1, −2), B (3, 1, 4) and C (5, 7, 1). 


Find the magnitude of two vectors \[\vec{a} \text{ and } \vec{b}\] that are of the same magnitude, are inclined at 60° and whose scalar product is 1/2.


Show that the points whose position vectors are \[\vec{a} = 4 \hat{i} - 3 \hat{j} + \hat{k} , \vec{b} = 2 \hat{i} - 4 \hat{j} + 5 \hat{k} , \vec{c} = \hat{i} - \hat{j}\] form a right triangle. 


If the vertices Aand C of ∆ABC have position vectors (1, 2, 3), (−1, 0, 0) and (0, 1, 2), respectively, what is the magnitude of ∠ABC


If AB and C have position vectors (0, 1, 1), (3, 1, 5) and (0, 3, 3) respectively, show that ∆ ABC is right-angled at C


Find the vector from the origin O to the centroid of the triangle whose vertices are (1, −1, 2), (2, 1, 3) and (−1, 2, −1).


Find the value of x for which \[x \left( \hat{i} + \hat{j} + \hat{k} \right)\] is a unit vector.


If \[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} = 2 \hat{i} - \hat{j} + 3 \hat{k} \text{ and }\vec{c} = \hat{i} - 2 \hat{j} + \hat{k} ,\] find a unit vector parallel to \[2 \vec{a} - \vec{b} + 3 \vec{c .}\] 


If \[\overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{BO} + \overrightarrow{OC} ,\] prove that A, B, C are collinear points.


if `hat"i" + hat"j" + hat"k", 2hat"i" + 5hat"j", 3hat"i" + 2 hat"j" - 3hat"k" and  hat"i" - 6hat"j" - hat"k"` respectively are the position vectors A, B, C and D, then find the angle between the straight lines AB and CD. Find whether `vec"AB" and vec"CD"` are collinear or not.


The unit normal to the plane 2x + y + 2z = 6 can be expressed in the vector form as


Let (h, k) be a fixed point where h > 0, k > 0. A straight line passing through this point cuts the positive direction of the coordinate axes at the points P and Q. Then the minimum area of the ΔOPQ. O being the origin, is


If `veca, vecb, vecc` are vectors such that `[veca, vecb, vecc]` = 4, then `[veca xx vecb, vecb xx vecc, vecc xx veca]` =


Assertion (A): If a line makes angles α, β, γ with positive direction of the coordinate axes, then sin2 α + sin2 β + sin2 γ = 2.

Reason (R): The sum of squares of the direction cosines of a line is 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×