English

Find the Angles of a Triangle Whose Vertices Are a (0, −1, −2), B (3, 1, 4) and C (5, 7, 1). - Mathematics

Advertisements
Advertisements

Question

Find the angles of a triangle whose vertices are A (0, −1, −2), B (3, 1, 4) and C (5, 7, 1). 

Sum

Solution

Given that
\[ \vec{OA} = 0 \hat{i} - 1 \hat{j} - 2 \hat{k} ; \vec{OB} = 3 \hat{i} + 1 \hat{j} + 4 \hat{k} ; \vec{OC} = 5 \hat{i} + 7 \hat{j} + 1 \hat{k} \] 
\[ \vec{AB} = \vec{OB} - \vec{OA} = 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \Rightarrow \left| \vec{AB} \right| = \sqrt{9 + 4 + 36} = 7\]
\[ \vec{BA} = \vec{OA} - \vec{OB} = - 3 \hat{i} - 2 \hat{j} - 6 \hat{k} \Rightarrow \left| \vec{BA} \right| = \sqrt{9 + 4 + 36} = 7\]
\[ \vec{BC} = \vec{OC} - \vec{OB} = 2 \hat{i} + 6 \hat{j} - 3 \hat{k} \Rightarrow \left| \vec{BC} \right| = \sqrt{4 + 36 + 9} = 7\]
\[ \vec{CB} = \vec{OB} - \vec{OC} = - 2 \hat{i} - 6 \hat{j} + 3 \hat{k} \Rightarrow \left| \vec{CB} \right| = \sqrt{4 + 36 + 9} = 7\]
\[ \vec{CA} = \vec{OA} - \vec{OC} = - 5 \hat{i} - 8 \hat{j} - 3 \hat{k} \Rightarrow \left| \vec{CA} \right| = \sqrt{25 + 64 + 9} = \sqrt{98} = 7\sqrt{2}\]
\[ \vec{AC} = \vec{OC} - \vec{OA} = 5 \hat{i} + 8 \hat{j} + 3 \hat{k} \Rightarrow \left| \vec{AC} \right| = \sqrt{25 + 64 + 9} = \sqrt{98} = 7\sqrt{2}\]
\[\cos A = \frac{\vec{AB} . \vec{AC}}{\left| \vec{AB} \right|\left| \vec{AC} \right|} = \frac{15 + 16 + 18}{\left( 7 \right)\left( 7\sqrt{2} \right)} = \frac{49}{49\sqrt{2}} = \frac{1}{\sqrt{2}}\]
\[ \Rightarrow A = \cos^{- 1} \left( \frac{1}{\sqrt{2}} \right) = \frac{\pi}{4}\]
\[\cos B = \frac{\vec{BA} . \vec{BC}}{\left| \vec{BA} \right|\left| \vec{BC} \right|} = \frac{- 6 - 12 + 18}{\left( 7 \right)\left( 7 \right)} = \frac{0}{49} = 0\]
\[ \Rightarrow B = \cos^{- 1} \left( 0 \right) = \frac{\pi}{2}\]
\[\cos C = \frac{\vec{CB} . \vec{CA}}{\left| \vec{CB} \right|\left| \vec{CA} \right|} = \frac{10 + 48 - 9}{\left( 7 \right)\left( 7\sqrt{2} \right)} = \frac{49}{49\sqrt{2}} = \frac{1}{\sqrt{2}}\]
\[ \Rightarrow C = \cos^{- 1} \left( \frac{1}{\sqrt{2}} \right) = \frac{\pi}{4}\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 24: Scalar Or Dot Product - Exercise 24.1 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 24 Scalar Or Dot Product
Exercise 24.1 | Q 21 | Page 31

RELATED QUESTIONS

Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are -2, 1, -1, and -3, -4, 1.


Write the position vector of the point which divides the join of points with position vectors `3veca-2vecb and 2veca+3vecb` in the ratio 2 : 1.


Classify the following measures as scalar and vector.

10 kg


Two vectors having the same magnitude are collinear.


Two collinear vectors having the same magnitude are equal.


Show that the vector `hati + hatj + hatk` is equally inclined to the axes OX, OY, and OZ.


Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are  `hati + 2hatj - hatk` and `-hati + hatj + hatk`  respectively, externally in the ratio 2:1.


If θ is the angle between two vectors `veca` and `vecb`, then `veca . vecb >= 0` only when ______.


Find a vector of magnitude 4 units which is parallel to the vector \[\sqrt{3} \hat{i} + \hat{j}\]


Express \[\vec{AB}\]  in terms of unit vectors \[\hat{i}\] and \[\hat{j}\], when the points are A (−6, 3), B (−2, −5)
Find \[\left| \vec{A} B \right|\] in each case.


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\]  \[\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k} \text{ and } \vec{b} = 4\hat{i} + 4 \hat{j} - 2\hat{k}\]


Find a unit vector parallel to the vector \[\hat{i} + \sqrt{3} \hat{j}\]


Find the angles which the vector \[\vec{a} = \hat{i} -\hat {j} + \sqrt{2} \hat{k}\] makes with the coordinate axes.


 Dot products of a vector with vectors \[\hat{i} - \hat{j} + \hat{k} , 2\hat{ i} + \hat{j} - 3\hat{k} \text{ and } \text{i} + \hat{j} + \hat{k}\]  are respectively 4, 0 and 2. Find the vector.


 If  \[\hat{ a  } \text{ and } \hat{b }\] are unit vectors inclined at an angle θ, prove that

 \[\tan\frac{\theta}{2} = \frac{\left| \hat{a} -\hat{b} \right|}{\left| \hat{a} + \hat{b} \right|}\] 


If \[\left| \vec{a} + \vec{b} \right| = 60, \left| \vec{a} - \vec{b} \right| = 40 \text{ and } \left| \vec{b} \right| = 46, \text{ find } \left| \vec{a} \right|\]


Show that the vector \[\hat{i} + \hat{j} + \hat{k}\] is equally inclined to the coordinate axes. 

 


Show that the vectors \[\vec{a} = \frac{1}{7}\left( 2 \hat{i} + 3 \hat{j} + 6 \hat{k} \right), \vec{b} = \frac{1}{7}\left( 3\hat{i} - 6 {j} + 2 \hat{k} \right), \vec{c} = \frac{1}{7}\left( 6 \hat{i} + 2 \hat{j} - 3 {k} \right)\] are mutually perpendicular unit vectors. 


For any two vectors \[\vec{a} \text{ and } \vec{b}\] show that \[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 0 \Leftrightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]


If either \[\vec{a} = \vec{0} \text{ or } \vec{b} = \vec{0}\]  then \[\vec{a} \cdot \vec{b} = 0 .\] But the converse need not be true. Justify your answer with an example. 


Show that the vectors \[\vec{a} = 3 \hat{i} - 2 \hat{j} + \hat{k} , \vec{b} = \hat{i} - 3 \hat{j} + 5 \hat{k} , \vec{c} = 2 \hat{i} + \hat{j} - 4 \hat{k}\] form a right-angled triangle. 


If \[\vec{a} = 2 \hat{i} + 2 \hat{j} + 3 \hat{k} , \vec{b} = - \hat{i} + 2 \hat{j} + \hat{k} \text{ and } \vec{c} = 3 \hat{i} + \hat{j}\] \[\vec{a} + \lambda \vec{b}\] is perpendicular to \[\vec{c}\] then find the value of λ. 


Show that the points whose position vectors are \[\vec{a} = 4 \hat{i} - 3 \hat{j} + \hat{k} , \vec{b} = 2 \hat{i} - 4 \hat{j} + 5 \hat{k} , \vec{c} = \hat{i} - \hat{j}\] form a right triangle. 


If the vertices Aand C of ∆ABC have position vectors (1, 2, 3), (−1, 0, 0) and (0, 1, 2), respectively, what is the magnitude of ∠ABC


Find the vector from the origin O to the centroid of the triangle whose vertices are (1, −1, 2), (2, 1, 3) and (−1, 2, −1).


If \[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} = 2 \hat{i} - \hat{j} + 3 \hat{k} \text{ and }\vec{c} = \hat{i} - 2 \hat{j} + \hat{k} ,\] find a unit vector parallel to \[2 \vec{a} - \vec{b} + 3 \vec{c .}\] 


If \[\overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{BO} + \overrightarrow{OC} ,\] prove that A, B, C are collinear points.


If \[\vec{a}  \times  \vec{b}  =  \vec{c}  \times  \vec{d}   \text { and }   \vec{a}  \times  \vec{c}  =  \vec{b}  \times  \vec{d}\] , show that \[\vec{a}  -  \vec{d}\] is parallel to \[\vec{b} - \vec{c}\] where \[\vec{a} \neq \vec{d} \text { and } \vec{b} \neq \vec{c}\] .


if `hat"i" + hat"j" + hat"k", 2hat"i" + 5hat"j", 3hat"i" + 2 hat"j" - 3hat"k" and  hat"i" - 6hat"j" - hat"k"` respectively are the position vectors A, B, C and D, then find the angle between the straight lines AB and CD. Find whether `vec"AB" and vec"CD"` are collinear or not.


A vector `vec"r"` has magnitude 14 and direction ratios 2, 3, – 6. Find the direction cosines and components of `vec"r"`, given that `vec"r"` makes an acute angle with x-axis.


Area of rectangle having vertices A, B, C and D will position vector `(- hati + 1/2hatj + 4hatk), (hati + 1/2hatj + 4hatk) (hati - 1/2hatj + 4hatk)` and `(-hati - 1/2hatj + 4hatk)` is


Assertion (A): If a line makes angles α, β, γ with positive direction of the coordinate axes, then sin2 α + sin2 β + sin2 γ = 2.

Reason (R): The sum of squares of the direction cosines of a line is 1.


A line l passes through point (– 1, 3, – 2) and is perpendicular to both the lines `x/1 = y/2 = z/3` and `(x + 2)/-3 = (y - 1)/2 = (z + 1)/5`. Find the vector equation of the line l. Hence, obtain its distance from the origin.


If points A, B and C have position vectors `2hati, hatj` and `2hatk` respectively, then show that ΔABC is an isosceles triangle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×