Advertisements
Advertisements
प्रश्न
Find the angles of a triangle whose vertices are A (0, −1, −2), B (3, 1, 4) and C (5, 7, 1).
उत्तर
\[ \vec{OA} = 0 \hat{i} - 1 \hat{j} - 2 \hat{k} ; \vec{OB} = 3 \hat{i} + 1 \hat{j} + 4 \hat{k} ; \vec{OC} = 5 \hat{i} + 7 \hat{j} + 1 \hat{k} \]
\[ \vec{AB} = \vec{OB} - \vec{OA} = 3 \hat{i} + 2 \hat{j} + 6 \hat{k} \Rightarrow \left| \vec{AB} \right| = \sqrt{9 + 4 + 36} = 7\]
\[ \vec{BA} = \vec{OA} - \vec{OB} = - 3 \hat{i} - 2 \hat{j} - 6 \hat{k} \Rightarrow \left| \vec{BA} \right| = \sqrt{9 + 4 + 36} = 7\]
\[ \vec{BC} = \vec{OC} - \vec{OB} = 2 \hat{i} + 6 \hat{j} - 3 \hat{k} \Rightarrow \left| \vec{BC} \right| = \sqrt{4 + 36 + 9} = 7\]
\[ \vec{CB} = \vec{OB} - \vec{OC} = - 2 \hat{i} - 6 \hat{j} + 3 \hat{k} \Rightarrow \left| \vec{CB} \right| = \sqrt{4 + 36 + 9} = 7\]
\[ \vec{CA} = \vec{OA} - \vec{OC} = - 5 \hat{i} - 8 \hat{j} - 3 \hat{k} \Rightarrow \left| \vec{CA} \right| = \sqrt{25 + 64 + 9} = \sqrt{98} = 7\sqrt{2}\]
\[ \vec{AC} = \vec{OC} - \vec{OA} = 5 \hat{i} + 8 \hat{j} + 3 \hat{k} \Rightarrow \left| \vec{AC} \right| = \sqrt{25 + 64 + 9} = \sqrt{98} = 7\sqrt{2}\]
\[\cos A = \frac{\vec{AB} . \vec{AC}}{\left| \vec{AB} \right|\left| \vec{AC} \right|} = \frac{15 + 16 + 18}{\left( 7 \right)\left( 7\sqrt{2} \right)} = \frac{49}{49\sqrt{2}} = \frac{1}{\sqrt{2}}\]
\[ \Rightarrow A = \cos^{- 1} \left( \frac{1}{\sqrt{2}} \right) = \frac{\pi}{4}\]
\[\cos B = \frac{\vec{BA} . \vec{BC}}{\left| \vec{BA} \right|\left| \vec{BC} \right|} = \frac{- 6 - 12 + 18}{\left( 7 \right)\left( 7 \right)} = \frac{0}{49} = 0\]
\[ \Rightarrow B = \cos^{- 1} \left( 0 \right) = \frac{\pi}{2}\]
\[\cos C = \frac{\vec{CB} . \vec{CA}}{\left| \vec{CB} \right|\left| \vec{CA} \right|} = \frac{10 + 48 - 9}{\left( 7 \right)\left( 7\sqrt{2} \right)} = \frac{49}{49\sqrt{2}} = \frac{1}{\sqrt{2}}\]
\[ \Rightarrow C = \cos^{- 1} \left( \frac{1}{\sqrt{2}} \right) = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are -2, 1, -1, and -3, -4, 1.
Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector
`2hati+3hatj+4hatk` to the plane `vecr` . `(2hati+hatj+3hatk)−26=0` . Also find image of P in the plane.
If `bara, barb, barc` are position vectors of the points A, B, C respectively such that `3bara+ 5barb-8barc = 0`, find the ratio in which A divides BC.
Represent graphically a displacement of 40 km, 30° east of north.
Classify the following measures as scalar and vector.
10 kg
Two collinear vectors are always equal in magnitude.
Two collinear vectors having the same magnitude are equal.
Find the direction cosines of the vector `hati + 2hatj + 3hatk`.
Find the direction cosines of the vector joining the points A (1, 2, -3) and B (-1, -2, 1) directed from A to B.
Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are `hati + 2hatj - hatk` and `-hati + hatj + hatk` respectively, externally in the ratio 2:1.
Find a vector of magnitude 4 units which is parallel to the vector \[\sqrt{3} \hat{i} + \hat{j}\]
Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] where \[\vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = \hat{j} + \hat{k}\]
Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] \[\vec{a} = 3\hat{i} - 2\hat{j} - 6\hat{k} \text{ and } \vec{b} = 4 \hat{i} - \hat{j} + 8 \hat{k}\]
Find a unit vector parallel to the vector \[\hat{i} + \sqrt{3} \hat{j}\]
Find the angle between the vectors \[\vec{a} = 2 \hat{i} - 3 \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]
Find the angles which the vector \[\vec{a} = \hat{i} -\hat {j} + \sqrt{2} \hat{k}\] makes with the coordinate axes.
If \[\hat{ a } \text{ and } \hat{b }\] are unit vectors inclined at an angle θ, prove that
\[\tan\frac{\theta}{2} = \frac{\left| \hat{a} -\hat{b} \right|}{\left| \hat{a} + \hat{b} \right|}\]
If \[\vec{a,} \vec{b,} \vec{c}\] are three mutually perpendicular unit vectors, then prove that \[\left| \vec{a} + \vec{b} + \vec{c} \right| = \sqrt{3}\]
If \[\vec{\alpha} = 3 \hat{i} + 4 \hat{j} + 5 \hat{k} \text{ and } \vec{\beta} = 2 \hat{i} + \hat{j} - 4 \hat{k} ,\] then express \[\vec{\beta}\] in the form of \[\vec{\beta} = \vec{\beta_1} + \vec{\beta_2} ,\] where \[\vec{\beta_1}\] is parallel to \[\vec{\alpha} \text{ and } \vec{\beta_2}\] is perpendicular to \[\vec{\alpha}\]
Find the magnitude of two vectors \[\vec{a} \text{ and } \vec{b}\] that are of the same magnitude, are inclined at 60° and whose scalar product is 1/2.
If the vertices A, B and C of ∆ABC have position vectors (1, 2, 3), (−1, 0, 0) and (0, 1, 2), respectively, what is the magnitude of ∠ABC?
Show that the points \[A \left( 2 \hat{i} - \hat{j} + \hat{k} \right), B \left( \hat{i} - 3 \hat{j} - 5 \hat{k} \right), C \left( 3 \hat{i} - 4 \hat{j} - 4 \hat{k} \right)\] are the vertices of a right angled triangle.
Find the value of x for which \[x \left( \hat{i} + \hat{j} + \hat{k} \right)\] is a unit vector.
If \[\vec{a} \times \vec{b} = \vec{c} \times \vec{d} \text { and } \vec{a} \times \vec{c} = \vec{b} \times \vec{d}\] , show that \[\vec{a} - \vec{d}\] is parallel to \[\vec{b} - \vec{c}\] where \[\vec{a} \neq \vec{d} \text { and } \vec{b} \neq \vec{c}\] .
if `hat"i" + hat"j" + hat"k", 2hat"i" + 5hat"j", 3hat"i" + 2 hat"j" - 3hat"k" and hat"i" - 6hat"j" - hat"k"` respectively are the position vectors A, B, C and D, then find the angle between the straight lines AB and CD. Find whether `vec"AB" and vec"CD"` are collinear or not.
A vector `vec"r"` has magnitude 14 and direction ratios 2, 3, – 6. Find the direction cosines and components of `vec"r"`, given that `vec"r"` makes an acute angle with x-axis.
Find the sine of the angle between the vectors `vec"a" = 3hat"i" + hat"j" + 2hat"k"` and `vec"b" = 2hat"i" - 2hat"j" + 4hat"k"`.
If `veca, vecb, vecc` are vectors such that `[veca, vecb, vecc]` = 4, then `[veca xx vecb, vecb xx vecc, vecc xx veca]` =
Area of rectangle having vertices A, B, C and D will position vector `(- hati + 1/2hatj + 4hatk), (hati + 1/2hatj + 4hatk) (hati - 1/2hatj + 4hatk)` and `(-hati - 1/2hatj + 4hatk)` is
A line l passes through point (– 1, 3, – 2) and is perpendicular to both the lines `x/1 = y/2 = z/3` and `(x + 2)/-3 = (y - 1)/2 = (z + 1)/5`. Find the vector equation of the line l. Hence, obtain its distance from the origin.
Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are `hati + 2hatj - hatk` and `-hati + hatj + hatk` respectively, internally the ratio 2:1.