Advertisements
Advertisements
प्रश्न
If \[\hat{ a } \text{ and } \hat{b }\] are unit vectors inclined at an angle θ, prove that
\[\tan\frac{\theta}{2} = \frac{\left| \hat{a} -\hat{b} \right|}{\left| \hat{a} + \hat{b} \right|}\]
उत्तर
\[\text{ Given that } \hat{a}\text{ and } \hat{b}\text{ are unit vectors }.\]
\[So,\left| \hat{a} \right|=1,\left| \hat{b} \right|=1\]
\[\text{ We have }\]
\[ \left| \hat{a} + \hat{b} \right|^2 = \left| \hat{a} \right|^2 + \left| \hat{b} \right|^2 + 2 \hat{a} .\hat{ b} \]
\[ = 1 + 1 + 2 \left| \hat{a} \right| \left| \hat{b} \right| \cos \theta\]
\[ = 2 + 2\cos \theta\]
\[ \Rightarrow \cos\theta = \frac{\left| \hat{a} + \hat{b} \right|^2 - 2}{2} . . . \left( 1 \right)\]
\[ \left| \hat{a} - b \right|^2 = \left| \hat{a} \right|^2 + \left| \hat{b} \right|^2 - 2 \hat{a} . \hat{b} \]
\[ = 1 + 1 - 2 \left| \hat{a} \right| \left| \hat{b} \right| \cos \theta\]
\[ = 2 - 2\cos \theta\]
\[ \Rightarrow \cos\theta = \frac{2 - \left| \hat{a} - \hat{b} \right|^2}{2} . . . \left( 2 \right)\]
\[ \sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}}\]
\[ = \sqrt{\frac{1 - \frac{2 - \left| \hat{a} - \hat{b} \right|^2}{2}}{2}}[\text{ From } (2)]\]
\[ = \sqrt{\frac{2 + \left| \hat{a} - \hat{b} \right|^2 - 2}{4}}\]
\[ = \sqrt{\frac{\left| \hat{a} - \hat{b} \right|^2}{4}}\]
\[ = \frac{1}{2}\left| \hat{a} - \hat{b} \right|\]
\[\text{ Now },\]
\[\tan \frac{\theta}{2} = \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} = \frac{\frac{1}{2}\left| \hat{a} - \hat{b} \right|}{\frac{1}{2}\left| \hat{a} + \hat{b} \right|} = \frac{\left| \hat{a} - \hat{b} \right|}{\left| \hat{a} + b \right|}\]
APPEARS IN
संबंधित प्रश्न
Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are -2, 1, -1, and -3, -4, 1.
If `bara, barb, bar c` are the position vectors of the points A, B, C respectively and ` 2bara + 3barb - 5barc = 0` , then find the ratio in which the point C divides line segment AB.
If `bara, barb, barc` are position vectors of the points A, B, C respectively such that `3bara+ 5barb-8barc = 0`, find the ratio in which A divides BC.
Represent graphically a displacement of 40 km, 30° east of north.
Classify the following as scalar and vector quantity.
Time period
Show that the vector `hati + hatj + hatk` is equally inclined to the axes OX, OY, and OZ.
Show that the points A, B and C with position vectors `veca = 3hati - 4hatj - 4hatk`, `vecb = 2hati - hatj + hatk` and `vecc = hati - 3hatj - 5hatk`, respectively form the vertices of a right angled triangle.
Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of the x-axis.
Express \[\vec{AB}\] in terms of unit vectors \[\hat{i}\] and \[\hat{j}\], when the points are A (4, −1), B (1, 3)
Find \[\left| \vec{A} B \right|\] in each case.
ABCD is a parallelogram. If the coordinates of A, B, C are (−2, −1), (3, 0) and (1, −2) respectively, find the coordinates of D.
Find a unit vector parallel to the vector \[\hat{i} + \sqrt{3} \hat{j}\]
Dot product of a vector with \[\hat{i} + \hat{j} - 3\hat{k} , \hat{i} + 3\hat{j} - 2 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 4 \hat{k}\] are 0, 5 and 8 respectively. Find the vector.
Dot products of a vector with vectors \[\hat{i} - \hat{j} + \hat{k} , 2\hat{ i} + \hat{j} - 3\hat{k} \text{ and } \text{i} + \hat{j} + \hat{k}\] are respectively 4, 0 and 2. Find the vector.
If \[\vec{a,} \vec{b,} \vec{c}\] are three mutually perpendicular unit vectors, then prove that \[\left| \vec{a} + \vec{b} + \vec{c} \right| = \sqrt{3}\]
If \[\left| \vec{a} + \vec{b} \right| = 60, \left| \vec{a} - \vec{b} \right| = 40 \text{ and } \left| \vec{b} \right| = 46, \text{ find } \left| \vec{a} \right|\]
Show that the vector \[\hat{i} + \hat{j} + \hat{k}\] is equally inclined to the coordinate axes.
For any two vectors \[\vec{a} \text{ and } \vec{b}\] show that \[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 0 \Leftrightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]
If \[\vec{a} = 2 \hat{i} - \hat{j} + \hat{k}\] \[\vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\] \[\vec{c} = \hat{i} + 3 \hat{j} - \hat{k}\] find λ such that \[\vec{a}\] is perpendicular to \[\lambda \vec{b} + \vec{c}\]
If \[\vec{p} = 5 \hat{i} + \lambda \hat{j} - 3 \hat{k} \text{ and } \vec{q} = \hat{i} + 3 \hat{j} - 5 \hat{k} ,\] then find the value of λ, so that \[\vec{p} + \vec{q}\] and \[\vec{p} - \vec{q}\] are perpendicular vectors.
If \[\vec{a} = 2 \hat{i} + 2 \hat{j} + 3 \hat{k} , \vec{b} = - \hat{i} + 2 \hat{j} + \hat{k} \text{ and } \vec{c} = 3 \hat{i} + \hat{j}\] \[\vec{a} + \lambda \vec{b}\] is perpendicular to \[\vec{c}\] then find the value of λ.
Find the angles of a triangle whose vertices are A (0, −1, −2), B (3, 1, 4) and C (5, 7, 1).
Find the vector from the origin O to the centroid of the triangle whose vertices are (1, −1, 2), (2, 1, 3) and (−1, 2, −1).
If \[\overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{BO} + \overrightarrow{OC} ,\] prove that A, B, C are collinear points.
If \[\vec{a} \times \vec{b} = \vec{c} \times \vec{d} \text { and } \vec{a} \times \vec{c} = \vec{b} \times \vec{d}\] , show that \[\vec{a} - \vec{d}\] is parallel to \[\vec{b} - \vec{c}\] where \[\vec{a} \neq \vec{d} \text { and } \vec{b} \neq \vec{c}\] .
A vector `vec"r"` has magnitude 14 and direction ratios 2, 3, – 6. Find the direction cosines and components of `vec"r"`, given that `vec"r"` makes an acute angle with x-axis.
Find the sine of the angle between the vectors `vec"a" = 3hat"i" + hat"j" + 2hat"k"` and `vec"b" = 2hat"i" - 2hat"j" + 4hat"k"`.
If A, B, C, D are the points with position vectors `hat"i" + hat"j" - hat"k", 2hat"i" - hat"j" + 3hat"k", 2hat"i" - 3hat"k", 3hat"i" - 2hat"j" + hat"k"`, respectively, find the projection of `vec"AB"` along `vec"CD"`.
The unit normal to the plane 2x + y + 2z = 6 can be expressed in the vector form as
Let (h, k) be a fixed point where h > 0, k > 0. A straight line passing through this point cuts the positive direction of the coordinate axes at the points P and Q. Then the minimum area of the ΔOPQ. O being the origin, is
If `veca, vecb, vecc` are vectors such that `[veca, vecb, vecc]` = 4, then `[veca xx vecb, vecb xx vecc, vecc xx veca]` =
If points A, B and C have position vectors `2hati, hatj` and `2hatk` respectively, then show that ΔABC is an isosceles triangle.
Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are `hati + 2hatj - hatk` and `-hati + hatj + hatk` respectively, internally the ratio 2:1.