हिंदी

If → α = 3 ^ I + 4 ^ J + 5 ^ K and → β = 2 ^ I + ^ J − 4 ^ K , Then Express → β in the Form of → β = → β 1 + → β 2 , Where → β 1 is Parallel to → α and → β 2 is Perpendicular to → α - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\vec{\alpha} = 3 \hat{i} + 4 \hat{j} + 5 \hat{k} \text{ and } \vec{\beta} = 2 \hat{i} + \hat{j} - 4 \hat{k} ,\] then express \[\vec{\beta}\] in the form of  \[\vec{\beta} = \vec{\beta_1} + \vec{\beta_2} ,\]  where \[\vec{\beta_1}\] is parallel to \[\vec{\alpha} \text{ and } \vec{\beta_2}\]  is perpendicular to \[\vec{\alpha}\]

योग

उत्तर

\[\text{ Given that } \vec{\alpha} =3 \hat{i} + 4 \hat{j} +5 \hat{k} \text{ and } \vec{\beta} =2 \hat{i} + \hat{j} - 4 \hat{k} \]
\[\hat{ Also },\]
\[ \vec{\beta} = \vec{\beta_1} + \vec{\beta_2} \]
\[ \Rightarrow \vec{\beta_2} = \vec{\beta} - \vec{\beta}_1 . . . \left( 1 \right)\]
\[\text{ Since } \vec{\beta}_1 \text{ is parallel to } \vec{\alpha} ,\]
\[ \vec{\beta_1} = t \vec{\alpha} \]
\[ \Rightarrow \vec{\beta_1} = t \left( 3 \hat{i} + 4 \hat{j} +5 \hat{k} \right) = 3t \hat{i} + 4t \hat{j} +5t \hat{k} ...(2)\]
\[\text{ Substituting the values of } \vec{\beta_1} \text{ and } \vec{\alpha} \text{ in } (1), \text{ we get }\]
\[ \vec{\beta_2} = 2 \hat{i} + \hat{j} - 4 \hat{k} - \left( 3t \hat{i} + 4t \hat{j} +5t \hat{k} \right) = \left( 2 - 3t \right) \hat{i} + \left( 1 - 4t \right) \hat{j} + \left( - 4 - 5t \right) \hat{k} . . . \left( 3 \right)\]
\[\text{ Since } \vec{\beta_2} \text{ is perpendicular to } \vec{\alpha} ,\]
\[ \vec{\beta_2} . \vec{\alpha} = 0\]
\[ \Rightarrow \left[ \left( 2 - 3t \right) \text{i} + \left( 1 - 4t \right) \hat{j} + \left( - 4 - 5t \right) \hat{k} \right] . \left( 3 \hat{i} + 4 \hat{j} +5 \hat{k} \right) = 0\]
\[ \Rightarrow 3 \left( 2 - 3t \right) + 4 \left( 1 - 4t \right) + 5 \left( - 4 - 5t \right) = 0\]
\[ \Rightarrow 6 - 9t + 4 - 16t - 20 - 25t = 0\]
\[ \Rightarrow - 50t = 10\]
\[ \Rightarrow t = \frac{- 1}{5}\]
\[\text{ From } (2) \text{ and } (3), \text{ we get }\]
\[ \vec{\beta_1} = \frac{- 1}{5} \left( 3 \hat{i} + 4 \hat{j} +5 \hat{k} \right)\]
\[ \vec{\beta_2} = \frac{13}{5} \hat{i} + \frac{9}{5} \hat{j} - 3 \hat{k} = \frac{1}{5}\left( 13 \hat{i} + 9 \hat{j} - 15 \hat{k} \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: Scalar Or Dot Product - Exercise 24.1 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 24 Scalar Or Dot Product
Exercise 24.1 | Q 17 | पृष्ठ ३०

संबंधित प्रश्न

Write the position vector of the point which divides the join of points with position vectors `3veca-2vecb and 2veca+3vecb` in the ratio 2 : 1.


Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector

`2hati+3hatj+4hatk` to the plane `vecr` . `(2hati+hatj+3hatk)−26=0` . Also find image of P in the plane.


If `bara, barb, barc` are position vectors of the points A, B, C respectively such that `3bara+ 5barb-8barc = 0`, find the ratio in which A divides BC.


In Figure, identify the following vector.

 

Coinitial


Two collinear vectors are always equal in magnitude.


Two vectors having the same magnitude are collinear.


Find the direction cosines of the vector `hati + 2hatj + 3hatk`.


Show that the vector `hati + hatj + hatk` is equally inclined to the axes OX, OY, and OZ.


Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are  `hati + 2hatj - hatk` and `-hati + hatj + hatk`  respectively, externally in the ratio 2:1.


Find the position vector of the mid point of the vector joining the points P (2, 3, 4) and Q (4, 1, – 2).


If θ is the angle between two vectors `veca` and `vecb`, then `veca . vecb >= 0` only when ______.


Let `veca` and `vecb` be two unit vectors, and θ is the angle between them. Then `veca + vecb` is a unit vector if ______.


Find a vector of magnitude 4 units which is parallel to the vector \[\sqrt{3} \hat{i} + \hat{j}\]


ABCD is a parallelogram. If the coordinates of A, B, C are (−2, −1), (3, 0) and (1, −2) respectively, find the coordinates of D.


Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\]  \[\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k} \text{ and } \vec{b} = 4\hat{i} + 4 \hat{j} - 2\hat{k}\]


Find the angle between the vectors \[\vec{a} = 2 \hat{i} - 3 \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]


Find the angles which the vector \[\vec{a} = \hat{i} -\hat {j} + \sqrt{2} \hat{k}\] makes with the coordinate axes.


Dot product of a vector with \[\hat{i} + \hat{j} - 3\hat{k} , \hat{i} + 3\hat{j} - 2 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 4 \hat{k}\] are 0, 5 and 8 respectively. Find the vector.


\[\text{If }\vec{a} = 3 \hat{i} - \hat{j} - 4 \hat{k} , \vec{b} = - 2 \hat{i} + 4 \hat{j} - 3 \hat{k}\text{ and }\vec{c} = \hat{i} + 2 \hat{j} - \hat{k} ,\text{ find }\left| 3 \vec{a} - 2 \vec{b} + 4 \vec{c} \right| .\]

 


Show that the vector \[\hat{i} + \hat{j} + \hat{k}\] is equally inclined to the coordinate axes. 

 


For any two vectors \[\vec{a} \text{ and } \vec{b}\] show that \[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 0 \Leftrightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]


If \[\vec{a} = 2 \hat{i} + 2 \hat{j} + 3 \hat{k} , \vec{b} = - \hat{i} + 2 \hat{j} + \hat{k} \text{ and } \vec{c} = 3 \hat{i} + \hat{j}\] \[\vec{a} + \lambda \vec{b}\] is perpendicular to \[\vec{c}\] then find the value of λ. 


Find the angles of a triangle whose vertices are A (0, −1, −2), B (3, 1, 4) and C (5, 7, 1). 


Find the magnitude of two vectors \[\vec{a} \text{ and } \vec{b}\] that are of the same magnitude, are inclined at 60° and whose scalar product is 1/2.


If the vertices Aand C of ∆ABC have position vectors (1, 2, 3), (−1, 0, 0) and (0, 1, 2), respectively, what is the magnitude of ∠ABC


If AB and C have position vectors (0, 1, 1), (3, 1, 5) and (0, 3, 3) respectively, show that ∆ ABC is right-angled at C


Show that the points \[A \left( 2 \hat{i} - \hat{j} + \hat{k} \right), B \left( \hat{i} - 3 \hat{j} - 5 \hat{k} \right), C \left( 3 \hat{i} - 4 \hat{j} - 4 \hat{k} \right)\] are the vertices of a right angled triangle.


If \[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} = 2 \hat{i} - \hat{j} + 3 \hat{k} \text{ and }\vec{c} = \hat{i} - 2 \hat{j} + \hat{k} ,\] find a unit vector parallel to \[2 \vec{a} - \vec{b} + 3 \vec{c .}\] 


If `vec"a"` and `vec"b"` are the position vectors of A and B, respectively, find the position vector of a point C in BA produced such that BC = 1.5 BA.


A vector `vec"r"` has magnitude 14 and direction ratios 2, 3, – 6. Find the direction cosines and components of `vec"r"`, given that `vec"r"` makes an acute angle with x-axis.


The unit normal to the plane 2x + y + 2z = 6 can be expressed in the vector form as


Let (h, k) be a fixed point where h > 0, k > 0. A straight line passing through this point cuts the positive direction of the coordinate axes at the points P and Q. Then the minimum area of the ΔOPQ. O being the origin, is


The altitude through vertex C of a triangle ABC, with position vectors of vertices `veca, vecb, vecc` respectively is:


Find the direction ratio and direction cosines of a line parallel to the line whose equations are 6x − 12 = 3y + 9 = 2z − 2


A line l passes through point (– 1, 3, – 2) and is perpendicular to both the lines `x/1 = y/2 = z/3` and `(x + 2)/-3 = (y - 1)/2 = (z + 1)/5`. Find the vector equation of the line l. Hence, obtain its distance from the origin.


If points A, B and C have position vectors `2hati, hatj` and `2hatk` respectively, then show that ΔABC is an isosceles triangle.


Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are  `hati + 2hatj - hatk` and `-hati + hatj + hatk`  respectively, internally the ratio 2:1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×