Advertisements
Advertisements
प्रश्न
Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector
`2hati+3hatj+4hatk` to the plane `vecr` . `(2hati+hatj+3hatk)−26=0` . Also find image of P in the plane.
उत्तर
Let M be the foot of the perpendicular drawn from the point P(2, 3, 4) in the plane
`(2hati+hatj+3hatk)−26=0 or 2x+y+3z-26=0`
Then, PM is the normal to the plane. So, the direction ratios of PM are proportional to 2, 1, 3.
Since PM passes through P(2, 3, 4) and has direction ratios proportional to 2, 1, 3, so the equation of PM is
`(x−2)/2=(y−3)/1=(z−4)/3=r (say)`
Let the coordinates of M be (2r + 2, r + 3, 3r + 4). Since M lies in the plane 2x + y + 3z − 26 = 0,so
2(2r+2)+r+3+3(3r+4)−26=0
⇒4r+4+r+3+9r+12−26=0
⇒14r−7=0
`⇒r=1/2`
Therefore, the coordinates of M are
`(2r+2, r+3, 3r+4)=(2xx1/2+2, 1/2+3, 3xx1/2+4)=(3, 7/2, 11/2)`
Thus, the position vector of the foot of perpendicular are `3hati+72hatj+112hatk.`
Now,
Length of the perpendicular from P on to the given plane
`=∣(2xx2+1xx3+3xx4−26)/sqrt(4+1+9)∣`
`=7/sqrt14`
`=sqrt(7/2) units`
Let `Q(x_1, y_1, z_1)`
be the image of point P in the given plane.
Then, the coordinates of M are ` ((x_1+2)/2, (y_1+3)/2, (z_1+4)/2)`
But, the coordinates of M are `(3, 7/2, 11/2)`
`therefore ((x_1+2)/2, (y_1+3)/2, (z_1+4)/2)=(3, 7/2, 11/2)`
`⇒(x_1+2)/2=3, (y_1+3)/2=7/2, (z_1+4)/2=11/2`
`⇒x_1=4, y_1=4, z_1=7`
Thus, the coordinates of the image of the point P in the given plane are (4, 4, 7).
APPEARS IN
संबंधित प्रश्न
Find the value of 'p' for which the vectors `3hati+2hatj+9hatk and hati-2phatj+3hatk` are parallel
If `bara, barb, barc` are position vectors of the points A, B, C respectively such that `3bara+ 5barb-8barc = 0`, find the ratio in which A divides BC.
Classify the following measures as scalar and vector.
10 kg
Two vectors having the same magnitude are collinear.
Find the direction cosines of the vector `hati + 2hatj + 3hatk`.
Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of the x-axis.
Express \[\vec{AB}\] in terms of unit vectors \[\hat{i}\] and \[\hat{j}\], when the points are A (4, −1), B (1, 3)
Find \[\left| \vec{A} B \right|\] in each case.
ABCD is a parallelogram. If the coordinates of A, B, C are (−2, −1), (3, 0) and (1, −2) respectively, find the coordinates of D.
Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] where \[\vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = \hat{j} + \hat{k}\]
Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] \[\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k} \text{ and } \vec{b} = 4\hat{i} + 4 \hat{j} - 2\hat{k}\]
Find a unit vector parallel to the vector \[\hat{i} + \sqrt{3} \hat{j}\]
Dot product of a vector with \[\hat{i} + \hat{j} - 3\hat{k} , \hat{i} + 3\hat{j} - 2 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 4 \hat{k}\] are 0, 5 and 8 respectively. Find the vector.
If \[\hat{a} \text{ and } \hat{b}\] are unit vectors inclined at an angle θ, prove that \[\cos\frac{\theta}{2} = \frac{1}{2}\left| \hat{a} + \hat{b} \right|\]
If \[\vec{a,} \vec{b,} \vec{c}\] are three mutually perpendicular unit vectors, then prove that \[\left| \vec{a} + \vec{b} + \vec{c} \right| = \sqrt{3}\]
If \[\left| \vec{a} + \vec{b} \right| = 60, \left| \vec{a} - \vec{b} \right| = 40 \text{ and } \left| \vec{b} \right| = 46, \text{ find } \left| \vec{a} \right|\]
For any two vectors \[\vec{a} \text{ and } \vec{b}\] show that \[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 0 \Leftrightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]
If \[\vec{a} = 2 \hat{i} - \hat{j} + \hat{k}\] \[\vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\] \[\vec{c} = \hat{i} + 3 \hat{j} - \hat{k}\] find λ such that \[\vec{a}\] is perpendicular to \[\lambda \vec{b} + \vec{c}\]
If \[\vec{a} = 2 \hat{i} + 2 \hat{j} + 3 \hat{k} , \vec{b} = - \hat{i} + 2 \hat{j} + \hat{k} \text{ and } \vec{c} = 3 \hat{i} + \hat{j}\] \[\vec{a} + \lambda \vec{b}\] is perpendicular to \[\vec{c}\] then find the value of λ.
If A, B and C have position vectors (0, 1, 1), (3, 1, 5) and (0, 3, 3) respectively, show that ∆ ABC is right-angled at C.
Find the vector from the origin O to the centroid of the triangle whose vertices are (1, −1, 2), (2, 1, 3) and (−1, 2, −1).
Find the unit vector in the direction of vector \[\overrightarrow{PQ} ,\]
where P and Q are the points (1, 2, 3) and (4, 5, 6).
Show that the points \[A \left( 2 \hat{i} - \hat{j} + \hat{k} \right), B \left( \hat{i} - 3 \hat{j} - 5 \hat{k} \right), C \left( 3 \hat{i} - 4 \hat{j} - 4 \hat{k} \right)\] are the vertices of a right angled triangle.
If \[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} = 2 \hat{i} - \hat{j} + 3 \hat{k} \text{ and }\vec{c} = \hat{i} - 2 \hat{j} + \hat{k} ,\] find a unit vector parallel to \[2 \vec{a} - \vec{b} + 3 \vec{c .}\]
Show that the vectors \[2 \hat{i} - 3 \hat{j} + 4 \hat{k}\text{ and }- 4 \hat{i} + 6 \hat{j} - 8 \hat{k}\] are collinear.
A vector `vec"r"` has magnitude 14 and direction ratios 2, 3, – 6. Find the direction cosines and components of `vec"r"`, given that `vec"r"` makes an acute angle with x-axis.
The unit normal to the plane 2x + y + 2z = 6 can be expressed in the vector form as
Find the direction ratio and direction cosines of a line parallel to the line whose equations are 6x − 12 = 3y + 9 = 2z − 2