Advertisements
Advertisements
प्रश्न
If the vertices A, B and C of ∆ABC have position vectors (1, 2, 3), (−1, 0, 0) and (0, 1, 2), respectively, what is the magnitude of ∠ABC?
उत्तर
\[\text{ Given that }\]
\[ \vec{OA} = \hat{i} + 2 \hat{j} + 3 \hat{k} ; \vec{OB} = - 1 \hat{i} + 0 \hat{j} + 0 \hat{k} ; \vec{OC} = 0 \hat{i} + 1 \hat{j} + 2 \hat{k} \]
\[ \vec{AB} = \vec{OB} - \vec{OA} = - 2 \hat{i} - 2 \hat{j} - 3 \hat{k} \Rightarrow \left| \vec{AB} \right| = \sqrt{4 + 4 + 9} = \sqrt{17}\]
\[ \vec{BC} = \vec{OC} - \vec{OB} = \hat{i} + \hat{j} + 2 \hat{k} \Rightarrow \left| \vec{BC} \right| = \sqrt{1 + 1 + 4} = \sqrt{6}\]
\[ \vec{CA} = \vec{OA} - \vec{OC} = \hat{i} + \hat{j} + \hat{k} \Rightarrow \left| \vec{CA} \right| = \sqrt{1 + 1 + 1} = \sqrt{3}\]
\[\cos ∠ ABC = \frac{\left| \vec{AB} . \vec{BC} \right|}{\left| \vec{AB} \right|\left| \vec{BC} \right|} = \frac{\left| - 2 - 2 - 6 \right|}{\left( \sqrt{17} \right)\left( \sqrt{6} \right)} = \frac{10}{\sqrt{102}}\]
\[ \Rightarrow ∠ ABC = \cos^{- 1} \left( \frac{10}{\sqrt{102}} \right)\]
APPEARS IN
संबंधित प्रश्न
Find the position vector of a point which divides the join of points with position vectors `veca-2vecb" and "2veca+vecb`externally in the ratio 2 : 1
Find the value of 'p' for which the vectors `3hati+2hatj+9hatk and hati-2phatj+3hatk` are parallel
Represent graphically a displacement of 40 km, 30° east of north.
Classify the following measures as scalar and vector.
10 kg
In Figure, identify the following vector.
Coinitial
`veca and -veca` are collinear.
Find the direction cosines of the vector joining the points A (1, 2, -3) and B (-1, -2, 1) directed from A to B.
Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are `hati + 2hatj - hatk` and `-hati + hatj + hatk` respectively, externally in the ratio 2:1.
Show that the points A, B and C with position vectors `veca = 3hati - 4hatj - 4hatk`, `vecb = 2hati - hatj + hatk` and `vecc = hati - 3hatj - 5hatk`, respectively form the vertices of a right angled triangle.
Find a vector of magnitude 4 units which is parallel to the vector \[\sqrt{3} \hat{i} + \hat{j}\]
Find the angle between the vectors \[\vec{a} \text{ and } \vec{b}\] \[\vec{a} = 3\hat{i} - 2\hat{j} - 6\hat{k} \text{ and } \vec{b} = 4 \hat{i} - \hat{j} + 8 \hat{k}\]
Find the angle between the vectors \[\vec{a} = 2 \hat{i} - 3 \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]
Find the angles which the vector \[\vec{a} = \hat{i} -\hat {j} + \sqrt{2} \hat{k}\] makes with the coordinate axes.
Show that the vectors \[\vec{a} = \frac{1}{7}\left( 2 \hat{i} + 3 \hat{j} + 6 \hat{k} \right), \vec{b} = \frac{1}{7}\left( 3\hat{i} - 6 {j} + 2 \hat{k} \right), \vec{c} = \frac{1}{7}\left( 6 \hat{i} + 2 \hat{j} - 3 {k} \right)\] are mutually perpendicular unit vectors.
For any two vectors \[\vec{a} \text{ and } \vec{b}\] show that \[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 0 \Leftrightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]
If \[\vec{p} = 5 \hat{i} + \lambda \hat{j} - 3 \hat{k} \text{ and } \vec{q} = \hat{i} + 3 \hat{j} - 5 \hat{k} ,\] then find the value of λ, so that \[\vec{p} + \vec{q}\] and \[\vec{p} - \vec{q}\] are perpendicular vectors.
Find the angles of a triangle whose vertices are A (0, −1, −2), B (3, 1, 4) and C (5, 7, 1).
Find the magnitude of two vectors \[\vec{a} \text{ and } \vec{b}\] that are of the same magnitude, are inclined at 60° and whose scalar product is 1/2.
Show that the points whose position vectors are \[\vec{a} = 4 \hat{i} - 3 \hat{j} + \hat{k} , \vec{b} = 2 \hat{i} - 4 \hat{j} + 5 \hat{k} , \vec{c} = \hat{i} - \hat{j}\] form a right triangle.
If A, B and C have position vectors (0, 1, 1), (3, 1, 5) and (0, 3, 3) respectively, show that ∆ ABC is right-angled at C.
Find the vector from the origin O to the centroid of the triangle whose vertices are (1, −1, 2), (2, 1, 3) and (−1, 2, −1).
If \[\vec{a} \times \vec{b} = \vec{c} \times \vec{d} \text { and } \vec{a} \times \vec{c} = \vec{b} \times \vec{d}\] , show that \[\vec{a} - \vec{d}\] is parallel to \[\vec{b} - \vec{c}\] where \[\vec{a} \neq \vec{d} \text { and } \vec{b} \neq \vec{c}\] .
if `hat"i" + hat"j" + hat"k", 2hat"i" + 5hat"j", 3hat"i" + 2 hat"j" - 3hat"k" and hat"i" - 6hat"j" - hat"k"` respectively are the position vectors A, B, C and D, then find the angle between the straight lines AB and CD. Find whether `vec"AB" and vec"CD"` are collinear or not.
If `vec"a"` and `vec"b"` are the position vectors of A and B, respectively, find the position vector of a point C in BA produced such that BC = 1.5 BA.
If A, B, C, D are the points with position vectors `hat"i" + hat"j" - hat"k", 2hat"i" - hat"j" + 3hat"k", 2hat"i" - 3hat"k", 3hat"i" - 2hat"j" + hat"k"`, respectively, find the projection of `vec"AB"` along `vec"CD"`.
The altitude through vertex C of a triangle ABC, with position vectors of vertices `veca, vecb, vecc` respectively is:
Find the direction ratio and direction cosines of a line parallel to the line whose equations are 6x − 12 = 3y + 9 = 2z − 2
Assertion (A): If a line makes angles α, β, γ with positive direction of the coordinate axes, then sin2 α + sin2 β + sin2 γ = 2.
Reason (R): The sum of squares of the direction cosines of a line is 1.
If points A, B and C have position vectors `2hati, hatj` and `2hatk` respectively, then show that ΔABC is an isosceles triangle.