English

Prove that (a→+b→).(a→+b→) = |a→|2+|b→|2 if and only if a→.b→ are perpendicular, given a→≠0→,b→≠0→. - Mathematics

Advertisements
Advertisements

Question

Prove that `(veca + vecb).(veca + vecb)` = `|veca|^2 + |vecb|^2` if and only if `veca . vecb` are perpendicular, given `veca != vec0, vecb != vec0.`

Sum

Solution

`(veca + vecb) xx (veca + vecb) = |veca|^2 + |vecb|^2`

`veca xx veca + veca xx vecb + vecb xx veca + vecb xx vecb = |veca|^2 + |vecb|^2`

`|veca|^2 + 2veca xx vecb + |b|^2 = |veca|^2 + |vecb|^2`

`2veca xx vecb = 0`

`veca xx vecb = 0`

`veca, vecb` are perpendicular.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Vector Algebra - Exercise 10.5 [Page 459]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 10 Vector Algebra
Exercise 10.5 | Q 15 | Page 459

RELATED QUESTIONS

If `veca ` and `vecb` are two unit vectors such that `veca+vecb` is also a  unit vector, then find the angle between `veca` and `vecb`


If  `vec a, vec b, vec c`  are unit vectors such that `veca+vecb+vecc=0`, then write the value of  `vec a.vecb+vecb.vecc+vecc.vec a`.


If `vec a=7hati+hatj-4hatk and vecb=2hati+6hatj+3hatk` , then find the projection of `vec a and vecb`


The scalar product of the vector `hati + hatj + hatk` with a unit vector along the sum of vectors `2hati + 4hatj - 5hatk` and  `lambdahati + 2hatj +  3hatk` is equal to one. Find the value of `lambda`.


Find `lambda` if the scalar projection of `vec a = lambda hat i + hat j + 4 hat k` on `vec b = 2hati + 6hatj + 3hatk` is 4 units


Find \[\vec{a} \cdot \vec{b}\] when

 \[\vec{a} =\hat{i} - 2\hat{j} + \hat{k}\text{ and } \vec{b} = 4 \hat{i} - 4\hat{j} + 7 \hat{k}\]


Find \[\vec{a} \cdot \vec{b}\] when

\[\vec{a} = \hat{j} + 2 \hat{k}  \text{ and } \vec{b} = 2 \hat{i} + \hat{k}\]


Find \[\vec{a} \cdot \vec{b}\] when 

\[\vec{a} = \hat{j} - \hat{k} \text{ and } \vec{b} = 2 \hat{i} + 3 \hat{j} - 2 \hat{k}\]


For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if  

\[\vec{a} = \lambda \hat{i} + 2\hat{j} + \hat{k} \text{ and } \vec{b} = 5\hat{i} - 9 \hat{j} + 2\hat{k}\]


For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if

\[\vec{a} = 2 \hat{i} + 3 \hat{j} + 4\hat{k} \text{ and } \vec{b} = 3 \hat{i} - 2 \hat{j} +\lambda \hat{k}\]


What is the angle between vectors \[\vec{a} \text{ and } \vec{b}\] with magnitudes 2 and \[\sqrt{3}\] respectively? Given \[\vec{a} . \vec{b} = \sqrt{3} .\]


If the vectors \[3 \hat{i} + m \hat{j} + \hat{k} \text{ and } 2 \hat{i} - \hat{j} - 8 \hat{k}\]  are orthogonal, find m


If \[\vec{b}\] is a unit vector such that\[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) = 8, \text{ find } \left| \vec{a} \right| .\]


If \[\hat{a} , \hat{b}\] are unit vectors such that \[\hat{a} + \hat{b}\]  is a unit vector, write the value of \[\left| \hat{a} - \hat{b} \right| .\] 


If \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 5 \text{ and } \vec{a} . \vec{b} = 2, \text{ find } \left| \vec{a} - \vec{b} \right| .\]


For any two non-zero vectors, write the value of \[\frac{\left| \vec{a} + \vec{b} \right|^2 + \left| \vec{a} - \vec{b} \right|^2}{\left| \vec{a} \right|^2 + \left| \vec{b} \right|^2} .\] 


Write the value of \[\left( \vec{a} . \hat{i} \right) \hat{i} + \left( \vec{a} . \hat{j} \right) \hat{j} + \left( \vec{a} . \hat{k} \right) \hat{k} ,\]  where \[\vec{a}\] is any vector. 


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, find the angle between \[\vec{a} + \vec{b} \text{ and } \vec{a} - \vec{b} .\]


If \[\vec{a} \text{ and } \vec{b}\] are mutually perpendicular unit vectors, write the value of \[\left| \vec{a} + \vec{b} \right| .\] 


If \[\vec{a} , \vec{b} \text{ and } \vec{c}\] are mutually perpendicular unit vectors, write the value of \[\left| \vec{a} + \vec{b} + \vec{c} \right| .\] 


Find the projection of \[\vec{a} \text{ on } \vec{b} \text{ if } \vec{a} \cdot \vec{b} = 8 \text{ and } \vec{b} = 2 \hat{i} + 6 \hat{j} + 3 \hat{k} .\] 


If \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 3,\] find the projection of \[\vec{b} \text{ on } \vec{a}\] 


Write the projection of the vector \[\hat{i} + 3 \hat{j} + 7 \hat{k}\] on the vector \[2 \hat{i} - 3 \hat{j} + 6 \hat{k}\] 


For what value of λ are the vectors \[\vec{a} = 2 \text{i} + \lambda \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} - 2 \hat{j} + 3 \hat{k}\] perpendicular to each other?


Write the projection of the vector \[7 \hat{i} + \hat{j} - 4 \hat{k}\] on the vector \[2 \hat{i} + 6 \hat{j}+ 3 \hat{k} .\] 


If \[\vec{a}\] and \[\vec{b}\] are perpendicular vectors, \[\left| \vec{a} + \vec{b} \right| = 13\] and \[\left| \vec{a} \right| = 5\] find the value of \[\left| \vec{b} \right|\]


If the vectors \[\vec{a}\]  and \[\vec{b}\] are such that \[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = \frac{2}{3}\] and \[\vec{a} \times \vec{b}\] is a unit vector, then write the angle between \[\vec{a}\] and \[\vec{b}\] 


If \[\vec{a}\] and \[\vec{b}\] are two unit vectors such that \[\vec{a} + \vec{b}\] is also a unit vector, then find the angle between \[\vec{a}\] and \[\vec{b}\] 


Prove that, for any three vectors \[\vec{a} , \vec{b} , \vec{c}\] \[\left[ \vec{a} + \vec{b} , \vec{b} + \vec{c} , \vec{c} + \vec{a} \right] = 2 \left[ \vec{a} , \vec{b} , \vec{c} \right]\].


Show that the vectors \[\vec{a,} \vec{b,} \vec{c}\] are coplanar if and only if \[\vec{a} + \vec{b}\], \[\vec{b} + \vec{c}\] and \[\vec{c} + \vec{a}\] are coplanar.


Let `veca, vecb, vecc` be three vectors of magnitudes 3, 4 and 5 respectively. If each one is petpendicular to the sum of the other two vectors, then `|veca + vecb + vecc|` =


If two vectors `veca` and `vecb` are such that `|veca|` = 2, `|vecb|` = 3 and `veca.vecb` = 4, then `|veca - 2vecb|` is equal to ______.


If the two vectors `3hati + αhatj + hatk` and `2hati - hatj + 8hatk` are perpendicular to each other, then find the value of α.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×