Advertisements
Advertisements
Question
Show that the vectors \[\vec{a,} \vec{b,} \vec{c}\] are coplanar if and only if \[\vec{a} + \vec{b}\], \[\vec{b} + \vec{c}\] and \[\vec{c} + \vec{a}\] are coplanar.
Solution
Consider,
\[\left[ \left( \vec{a} + \vec{b} \right) \left( \vec{b} + \vec{c} \right) \left( \vec{c} + \vec{a} \right) \right] = \left( \vec{a} + \vec{b} \right) . \left\{ \left( \vec{b} + \vec{c} \right) \times \left( \vec{c} + \vec{a} \right) \right\} \]
\[ = \left( \vec{a} + \vec{b} \right) . \left( \vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{c} + \vec{c} + \vec{a} \right)\]
\[ = \left( \vec{a} + \vec{b} \right) . \left( \vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{a} \right) ( \because \vec{c} \times \vec{c} = \vec{0} )\]
\[ = \vec{a} . \left( \vec{b} \times \vec{c} \right) + \vec{a} . \left( \vec{b} \times \vec{a} \right) + \vec{a} . \left( \vec{c} \times \vec{a} \right) + \vec{b} . \left( \vec{b} \times \vec{c} \right) + \vec{b} . \left( \vec{b} \times \vec{a} \right) + \vec{b} . \left( \vec{c} \times \vec{a} \right)\]
\[ = \vec{a} . \left( \vec{b} \times \vec{c} \right) + \vec{b} . \left( \vec{c} \times \vec{a} \right)\]
\[ = \left[ \vec{a} \vec{b} \vec{c} \right] + \left[ \vec{b} \vec{c} \vec{a} \right]\]
\[ = 2\left[ \vec{a} \vec{b} \vec{c} \right]\]
Now, we can see that
\[\left[ ( \vec{a} + \vec{b} ) ( \vec{b} + \vec{c} ) ( \vec{c} + \vec{a} ) \right] = 2\left[ \vec{a} \vec{b} \vec{c} \right]\]
Hence, the vectors
\[\vec{a} , \vec{b} , \vec{c}\] are coplanar if and only if \[\vec{a} + \vec{b} , \vec{b} + \vec{c} , \vec{c} + \vec{a}\]are coplanar.
APPEARS IN
RELATED QUESTIONS
Find the magnitude of each of two vectors `veca` and `vecb` having the same magnitude such that the angle between them is 60° and their scalar product is `9/2`
Find \[\vec{a} \cdot \vec{b}\] when
\[\vec{a} = \hat{j} + 2 \hat{k} \text{ and } \vec{b} = 2 \hat{i} + \hat{k}\]
For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if
\[\vec{a} = 2 \hat{i} + 3 \hat{j} + 4\hat{k} \text{ and } \vec{b} = 3 \hat{i} - 2 \hat{j} +\lambda \hat{k}\]
For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if
\[\vec{a} = \lambda \hat{i} + 3 \hat{j} + 2 \hat{k}\text { and } \vec{b} = \hat{i} - \hat{j} + 3 \hat{k}\]
\[\text{ If } \vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = - \hat{j} + 2\hat{k} , \text{find} \left( \vec{a} - 2 \vec{b} \right) \cdot \left( \vec{a} + \vec{b} \right) .\]
What is the angle between vectors \[\vec{a} \text{ and } \vec{b}\] with magnitudes 2 and \[\sqrt{3}\] respectively? Given \[\vec{a} . \vec{b} = \sqrt{3} .\]
Find the cosine of the angle between the vectors \[4 \hat{i} - 3 \hat{j} + 3 \hat{k} \text{ and } 2 \hat{i} - \hat{j} - \hat{k} .\]
If the vectors \[3 \hat{i} - 2 \hat{j} - 4 \hat{k}\text{ and } 18 \hat{i} - 12 \hat{j} - m \hat{k}\] are parallel, find the value of m.
If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) = 0,\] find the relation between the magnitudes of \[\vec{a} \text{ and } \vec{b}\]
If \[\vec{b}\] is a unit vector such that\[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) = 8, \text{ find } \left| \vec{a} \right| .\]
If \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 5 \text{ and } \vec{a} . \vec{b} = 2, \text{ find } \left| \vec{a} - \vec{b} \right| .\]
If \[\vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = - \hat{j} + \hat{k} ,\] find the projection of \[\vec{a} \text{ on } \vec{b}\]
Write the projections of \[\vec{r} = 3 \hat{i} - 4 \hat{j} + 12 \hat{k}\] on the coordinate axes.
Write the value of \[\left( \vec{a} . \hat{i} \right) \hat{i} + \left( \vec{a} . \hat{j} \right) \hat{j} + \left( \vec{a} . \hat{k} \right) \hat{k} ,\] where \[\vec{a}\] is any vector.
Write the angle between two vectors \[\vec{a} \text{ and } \vec{b}\] with magnitudes \[\sqrt{3}\] and 2 respectively if \[\vec{a} \cdot \vec{b} = \sqrt{6} .\]
Write the projection of the vector \[\hat{i} + 3 \hat{j} + 7 \hat{k}\] on the vector \[2 \hat{i} - 3 \hat{j} + 6 \hat{k}\]
Write the value of λ so that the vectors \[\vec{a} = 2 \hat{i} + \lambda \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} - 2 \hat{j} + 3 \hat{k}\] are perpendicular to each other.
If \[\vec{a}\] and \[\vec{b}\] are two unit vectors such that \[\vec{a} + \vec{b}\] is also a unit vector, then find the angle between \[\vec{a}\] and \[\vec{b}\]
If the vectors \[\vec{a}\] and \[\vec{b}\] are such that \[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = \frac{2}{3}\] and \[\vec{a} \times \vec{b}\] is a unit vector, then write the angle between \[\vec{a}\] and \[\vec{b}\]
If \[\vec{a}\] and \[\vec{b}\] are two unit vectors such that \[\vec{a} + \vec{b}\] is also a unit vector, then find the angle between \[\vec{a}\] and \[\vec{b}\]
Let `vec("a") = hat"i" + 2hat"j" - 3hat"k"` and `vec("b") = 3hat"i" -"j" +2hat("k")` be two vectors. Show that the vectors `(vec("a")+vec("b"))` and `(vec("a")-vec("b"))`are perpendicular to each other.
The angle between two vectors `vec"a"` and `vec"b"` with magnitudes `sqrt(3)` and 4, respectively, and `vec"a" * vec"b" = 2sqrt(3)` is ______.
The vectors `vec"a" = 3hat"i" - 2hat"j" + 2hat"k"` and `vec"b" = -hat"i" - 2hat"k"` are the adjacent sides of a parallelogram. The acute angle between its diagonals is ______.
Let `veca, vecb, vecc` be three vectors of magnitudes 3, 4 and 5 respectively. If each one is petpendicular to the sum of the other two vectors, then `|veca + vecb + vecc|` =
If `veca, vecb, vecc` are three non-zero unequal vectors such that `veca.vecb = veca.vecc`, then find the angle between `veca` and `vecb - vecc`.
If the two vectors `3hati + αhatj + hatk` and `2hati - hatj + 8hatk` are perpendicular to each other, then find the value of α.