Advertisements
Advertisements
Question
Find a unit vector perpendicular to both the vectors \[\vec{a} + \vec{b} \text { and } \vec{a} - \vec{b}\] ,where \[\vec{a} = \hat{i}+ \hat{j} + \hat{k} , \vec{b} =\hat {i} + 2 \hat{j} + 3 \hat{k}\].
Solution
Let the unit vector be \[\vec{r}\] = \[x \hat{i} + y \hat{j} + z \hat{k}\].
\[\Rightarrow \sqrt{x^2 + y^2 + z^2} = 1\]
\[ \Rightarrow x^2 + y^2 + z^2 = 1 . . . \left( 1 \right)\]
\[\vec{a} + \vec{b} = 2\hat {i} + 3 \hat{j} + 4 \hat{k} \] \[\text { and } \] \[ \vec{a} - \vec{b} = -\hat{ j } - 2 \hat{k} \]
Since
\[\vec{r} . \left( \vec{a} + \vec{b} \right) = 0\] \[\text { and } \vec{r} . \left( \vec{a} - \vec{b} \right) = 0\]
\[\left( x\hat{ i} + y \hat{j} + z \hat{k} \right) . \left( 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \right) = 0\]
\[ \Rightarrow 2x + 3y + 4z = 0 . . . \left( 2 \right)\]
\[\text { and } \left( x \hat{i} + y \hat{j} + z \hat{k} \right) . \left( - \hat{j} - 2 \hat {k} \right) = 0\]
\[ \Rightarrow - y - 2z = 0 . . . \left( 3 \right)\]
\[\Rightarrow y = - 2z\]
\[\text { Putting the value of y in equation } \left( 2 \right), \text { we get }: \]
\[2x + 3\left( - 2z \right) + 4z = 0\]
\[ \Rightarrow x = z\]
\[\text { Substituting the values of x and y in equation }\left( 1 \right), \text { we get }:\]
\[z^2 + 4 z^2 + z^2 = 1\]
\[z = \pm \frac{1}{\sqrt{6}}\]
\[ \Rightarrow x = \pm \frac{1}{\sqrt{6}}\]
\[ \Rightarrow y = \mp \frac{2}{\sqrt{6}}\]
Hence the vectors are
\[\frac{1}{\sqrt{6}}\hat{ i } - \frac{2}{\sqrt{6}} \hat{j} + \frac{1}{\sqrt{6}} \hat{k} \]
\[\text { and } \]\[ - \frac{1}{\sqrt{6}} \hat{i} + \frac{2}{\sqrt{6}} \hat{j} - \frac{1}{\sqrt{6}} \hat{k} \]
APPEARS IN
RELATED QUESTIONS
If `veca = 2hati + 2hatj + 3hatk, vecb = -veci + 2hatj + hatk and vecc = 3hati + hatj` are such that `veca + lambdavecb` is perpendicular to `vecc`, then find the value of λ.
If a unit vector `veca` makes an angles `pi/3` with `hati, pi/4` with `hatj` and an acute angle θ with `hatk`, then find θ and, hence the compounds of `veca`.
If either `veca = vec0` or `vecb = vec0`, then `veca xxvecb = vec0`. Is the converse true? Justify your answer with an example.
Find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5).
Let the vectors `veca` and `vecb` be such that `|veca| = 3` and `|vecb| = sqrt2/3`, then `veca xx vecb` is a unit vector, if the angle between `veca` and `vecb` is ______.
Area of a rectangle having vertices A, B, C, and D with position vectors `-hati + 1/2 hatj + 4hatk, hati + 1/2 hatj + 4hatk, and -hati - 1/2j + 4hatk,` respectively is ______.
If θ is the angle between two vectors `hati - 2hatj + 3hatk and 3hati - 2hatj + hatk` find `sin theta`
Let `veca = 4hati + 5hatj - hatk`, `vecb = hati - 4hatj + 5hatk` and `vecc = 3hati + hatj - hatk`. Find a vector `vecd` which is perpendicular to both `vecc` and `vecb and vecd.veca = 21`
Find a unit vector perpendicular to the plane containing the vectors \[\vec{a} = 2 \hat{ i } + \hat{ j } + \hat{ k } \text{ and } \vec{b} = \hat{ i } + 2 \hat{ j } + \hat{ k } .\]
Find the area of the parallelogram whose diagonals are \[4 \hat{ i } - \hat{ j } - 3 \hat{ k } \text{ and } - 2 \hat{ j } + \hat{ j } - 2 \hat{ k } \]
Define \[\vec{a} \times \vec{b}\] and prove that \[\left| \vec{a} \times \vec{b} \right| = \left( \vec{a} . \vec{b} \right)\] tan θ, where θ is the angle between \[\vec{a} \text{ and } \vec{b}\] .
Let \[\vec{a} = \hat{ i } + 4 \hat{ j } + 2 \hat{ k } , \vec{b} = 3 \hat{ i }- 2 \hat{ j } + 7 \hat{ k } \text{ and } \vec{c} = 2 \hat{ i } - \hat{ j } + 4 \hat{ k } .\] Find a vector \[\vec{d}\] which is perpendicular to both \[\vec{a} \text{ and } \vec{d}\] \[\text{ and } \vec{c} \cdot \vec{d} = 15 .\]
If \[\vec{a} = 2 \hat{ i } - 3 \hat{ j } + \hat{ k } , \vec{b} = -\hat{ i } + \hat{ k } , \vec{c} = 2 \hat{ j } - \hat{ k } \] are three vectors, find the area of the parallelogram having diagonals \[\left( \vec{a} + \vec{b} \right)\] and \[\left( \vec{b} + \vec{c} \right)\] .
Write the value of \[\hat{ i } . \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } . \left( \hat{ k } \times \hat{ i } \right) + \hat{ k } . \left( \hat{ i } \times \hat{ j } \right) .\]
Write the value of \[\hat{ i } × \left( \hat{ j } + \hat{ k } \right) + \hat{ j } × \left( \hat{ k } + \hat{ i } \right) + \hat{ k } × \left( \hat{ i } + \hat{ j } \right) .\]
If \[\vec{a} \text{ and } \vec{b}\] are two vectors of magnitudes 3 and \[\frac{\sqrt{2}}{3}\] espectively such that \[\vec{a} \times \vec{b}\] is a unit vector. Write the angle between \[\vec{a} \text{ and } \vec{b} .\]
Write the value of \[\hat{ i } \times \left(\hat{ j } \times \hat{ k } \right) .\]
If \[\vec{c}\] is a unit vector perpendicular to the vectors \[\vec{a} \text{ and } \vec{b} ,\] write another unit vector perpendicular to \[\vec{a} \text{ and } \vec{b} .\]
Write the value of \[\left( \hat{ i } \times \hat{ j } \right) \cdot \hat{ k } + \left( \hat{ j } + \hat{ k } \right) \cdot \hat{ j } \]
If \[\vec{a}\] is any vector, then \[\left( \vec{a} \times \hat{ i } \right)^2 + \left( \vec{a} \times \hat{ j } \right)^2 + \left( \vec{a} \times \hat{ k } \right)^2 =\]
The vector \[\vec{b} = 3 \hat { i }+ 4 \hat {k }\] is to be written as the sum of a vector \[\vec{\alpha}\] parallel to \[\vec{a} = \hat {i} + \hat {j}\] and a vector \[\vec{\beta}\] perpendicular to \[\vec{a}\]. Then \[\vec{\alpha} =\]
If \[\vec{a} = \hat{ i } + \hat{ j } - \hat{ k } , \vec{b} = - \hat{ i } + 2\hat{ j } + 2 \hat{ k } \text{ and } \vec{c} = - \hat{ i } + 2 \hat{ j } - \hat{ k } ,\] then a unit vector normal to the vectors \[\vec{a} + \vec{b} \text{ and } \vec{b} - \vec{c}\] is
The value of \[\left( \vec{a} \times \vec{b} \right)^2\] is
The value of \[\hat{ i } \cdot \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } \cdot \left( \hat{ i } \times \hat{ k } \right) + \hat{ k } \cdot \left( \hat{ i } \times \hat{ j } \right),\] is
(a) If `veca = hati - 2j + 3veck , vecb = 2hati + 3hatj - 5hatk,` prove that `veca and vecaxxvecb` are perpendicular.
The number of vectors of unit length perpendicular to the vectors `vec"a" = 2hat"i" + hat"j" + 2hat"k"` and `vec"b" = hat"j" + hat"k"` is ______.
Let `hata` and `hatb` be two unit vectors such that the angle between them is `π/4`. If θ is the angle between the vectors `(hata + hatb)` and `(hata xx 2hatb + 2(hata xx hatb))`, then the value of 164 cos2θ is equal to ______.