English

If → a is any vector, then ( → a × ^ i ) 2 + ( → a × ^ j ) 2 + ( → a × ^ k ) 2 = - Mathematics

Advertisements
Advertisements

Question

If \[\vec{a}\] is any vector, then \[\left( \vec{a} \times \hat{ i }  \right)^2 + \left( \vec{a} \times \hat{ j } \right)^2 + \left( \vec{a} \times \hat{ k }  \right)^2 =\]

Options

  • \[\vec{a}^2\]

     

  • \[2 \vec{a}^2\]

  • \[3 \vec{a}^2\]

     

  • \[4 \vec{a}^2\]

MCQ

Solution

\[2 \vec{a}^2\] 

\[\text{ Let }  \vec{a} = a_1 \hat{ i }  + a_2 \hat{ j }  + a_3 \hat{ k }  \]

\[ \vec{a} \times \hat{ i }  = \begin{vmatrix}\hat{ i }  & \hat{ j }  & \hat{ k }  \\ a_1 & a_2 & a_3 \\ 1 & 0 & 0\end{vmatrix}\]

\[ = a_3 \hat{ j }  - a_2 \hat{ k }  \]

\[ \Rightarrow \left( \vec{a} \times \hat{ i } \right)^2 = \left( a_3 \hat{ j }  - a_2 \hat{ k }  \right)^2 \]

\[ = {a_3}^2 \left| \hat{ j  } \right|^2 + {a_2}^2 \left| \hat{ k } \right|^2 - 2 a_3 a_2 \left( \hat{ j } . \hat{ k }  \right)\]

\[ = {a_3}^2 + {a_2}^2 (\because \hat{ j }  . \hat{ k }  =0) . . . (1)\]

\[ \therefore \vec{a} \times \hat{ j } = \begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ a_1 & a_2 & a_3 \\ 0 & 1 & 0\end{vmatrix}\]

\[ = - a_3 \hat{ i } + a_1 \hat{ k }  \]

\[ \Rightarrow \left( \vec{a} \times \hat{ j }  \right)^2 = \left( - a_3 \hat{ i } + a_1 \hat{ k } \right)^2 \]

\[ = {a_3}^2 \left| \hat{ i } \right|^2 + {a_1}^2 \left| \hat{ k }  \right|^2 - 2 a_3 a_2 \left( \hat{ i} . \hat{ k } \right)\]

\[ = {a_3}^2 + {a_1}^2 (\because \hat{ i } .\hat{ k } =0) . . . (2)\]

\[ \therefore \vec{a} \times \hat{ k }  = \begin{vmatrix}\hat{ i }  & \hat{ j } & \hat{ k }  \\ a_1 & a_2 & a_3 \\ 0 & 0 & 1\end{vmatrix}\]

\[ = a_2 \hat{ i  } - a_1 \hat{ j }   \]

\[ \Rightarrow \left( \vec{a} \times k \right)^2 = \left( a_2 \hat{ i} - a_1 \hat{ j}  \right)^2 \]

\[ = {a_2}^2 \left| \hat{ i }  \right|^2 + {a_1}^2 \left| j \right|^2 + 2 a_1 a_2 \left( \hat{ i }  . \hat{ j },\right)\]

\[ = {a_2}^2 + {a_1}^2 (\because \hat{ i }  . \hat{ j }  =0) . . . (3)\]

\[\text{ Adding (1), (2) and (3), we get } \]

\[ \left( \vec{a} \times \hat{ i }  \right)^2 + \left( \vec{a} \times \hat{ j }  \right)^2 + \left( \vec{a} \times k \right)^2 = {a_3}^2 + {a_2}^2 + {a_3}^2 + {a_1}^2 + {a_2}^2 + {a_1}^2 \]

\[ = 2 \left( {a_1}^2 + {a_2}^2 + {a_3}^2 \right)\]

\[ = 2 \vec{a}^2 (\because\left| \vec{a} \right|=\sqrt{{a_1}^2 + {a_2}^2 + {a_3}^2})\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 25: Vector or Cross Product - MCQ [Page 34]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 25 Vector or Cross Product
MCQ | Q 1 | Page 34

RELATED QUESTIONS

If `veca = 2hati + 2hatj + 3hatk,  vecb = -veci + 2hatj + hatk and vecc = 3hati + hatj` are such that `veca + lambdavecb`  is perpendicular to `vecc`, then find the value of λ.


If θ is the angle between two vectors `hati - 2hatj + 3hatk and 3hati - 2hatj + hatk` find `sin theta`


Let `veca = 4hati + 5hatj - hatk`, `vecb  = hati - 4hatj + 5hatk` and `vecc = 3hati + hatj - hatk`. Find a vector `vecd` which is perpendicular to both `vecc` and `vecb and vecd.veca = 21`


If \[\vec{a} = 2 \hat{ i } + \hat{ k }  , \vec{b} = \hat { i }  + \hat{ j } + \hat{ k }  ,\]  find the magnitude of  \[\vec{a} \times \vec{b} .\]

 

 


 Find a unit vector perpendicular to both the vectors  \[4 \hat{ i } - \hat{ j }  + 3 \hat{ k } \text{ and }  - 2 \hat{ i  } + \hat{ j }  - 2 \hat{ k }  .\]

 


Find the magnitude of \[\vec{a} = \left( 3 \hat{ k }  + 4 \hat{ j } \right) \times \left( \hat{ i }  + \hat{ j }  - \hat{ k }  \right) .\]

 

\[\text{ If }  \vec{a} = 4 \hat{ i }  + 3 \hat{ j }  + \hat{ k }  \text{ and }  \vec{b} = \hat{ i }  - 2 \hat{ k } ,\text{  then find }  \left| 2 \hat{ b } \times \vec{a} \right| .\]

 


Find the area of the parallelogram determined by the vector \[2 \hat{ i }  \text{ and }  3 \hat{ j } \] .

 


Find the area of the parallelogram determined by the vector \[\hat{ i }  - 3 \hat{ j } + \hat{ k }  \text{ and }  \hat{ i }  + \hat{ j } + \hat{ k }  .\]

 


Find the area of the parallelogram whose diagonals are  \[4 \hat{ i } - \hat{ j }  - 3 \hat{ k }  \text{ and }  - 2 \hat{ j }  + \hat{ j }  - 2 \hat{ k } \]

 


\[\text{ If }  \left| \vec{a} \right| = 13, \left| \vec{b} \right| = 5 \text{ and }  \vec{a} . \vec{b} = 60, \text{ then find }  \left| \vec{a} \times \vec{b} \right| .\]

 


if \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 7 \text{ and }  \vec{a} \times \vec{b} = 3 \hat{ i }  + 2 \hat{ j } + 6 \hat{ k } ,\]  find the angle between  \[\vec{a} \text{ and }  \vec{b} .\]

 


If  \[\vec{p} \text{ and }  \vec{q}\] are unit vectors forming an angle of 30°; find the area of the parallelogram having \[\vec{a} = \vec{p} + 2 \vec{q} \text{ and }  \vec{b} = 2 \vec{p} + \vec{q}\] as its diagonals.

 
 

 


Define  \[\vec{a} \times \vec{b}\] and prove that \[\left| \vec{a} \times \vec{b} \right| = \left( \vec{a} . \vec{b} \right)\] tan θ, where θ is the angle between \[\vec{a} \text{ and }  \vec{b}\] .

 
 

 


Let \[\vec{a} = \hat{ i } + 4 \hat{ j }  + 2 \hat{ k } , \vec{b} = 3 \hat{ i }- 2 \hat{ j } + 7 \hat{ k }  \text{ and } \vec{c} = 2 \hat{ i } - \hat{ j }  + 4 \hat{ k }  .\]  Find a vector \[\vec{d}\] which is perpendicular to both \[\vec{a} \text{ and } \vec{d}\] \[\text{ and }  \vec{c} \cdot \vec{d} = 15 .\]

 
 

 


If \[\vec{a} = 2 \hat{ i } - 3 \hat{ j  } + \hat{ k } , \vec{b} = -\hat{  i }  + \hat{ k } , \vec{c} = 2 \hat{ j }  - \hat{ k } \]  are three vectors, find the area of the parallelogram having diagonals \[\left( \vec{a} + \vec{b} \right)\]  and \[\left( \vec{b} + \vec{c} \right)\] .

 
 

If \[\vec{a} = a_1 \hat{ i } + a_2 \hat{ j } + a_3 \hat{ k }  , \vec{b} = b_1 \hat{ i }  + b_2 \hat{ j }  + b_3 \hat{ k }  \text{ and }  \vec{c} = c_1 \hat{ i } + c_2 \hat{ j }  + c_3 \hat{ k }  ,\]then verify that \[\vec{a} \times \left(  \vec{b} + \vec{c} \right) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} .\]


If  \[\left| \vec{a} \times \vec{b} \right|^2 + \left| \vec{a} \cdot \vec{b} \right|^2 = 400\] and  \[\left| \vec{a} \right| = 5,\]  then write the value of \[\left| \vec{b} \right| .\]

 

Write the value of  \[\hat{ i } . \left( \hat{ j } \times \hat{ k }  \right) + \hat{ j }  . \left( \hat{ k } \times \hat{ i }  \right) + \hat{ k }  . \left( \hat{ j }  \times \hat{ i }  \right) .\]

 


For any two vectors  \[\vec{a} \text{ and }  \vec{b}\] write the value of \[\left( \vec{a} . \vec{b} \right)^2 + \left| \vec{a} \times \vec{b} \right|^2\] in terms of their magnitudes.

 
 

If   \[\vec{a} \text{ and }  \vec{b}\] are two vectors such that \[\left| \vec{a} \times \vec{b} \right| = \sqrt{3}\text{ and }  \vec{a} . \vec{b} = 1,\]  find the angle between.

 
 

 


Write a unit vector perpendicular to \[\hat{ i } + \hat{ j }  \text{ and }  \hat{ j }  + \hat{ k } .\]

 


If \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 = 144\]  and \[\left| \vec{a} \right| = 4,\]  find \[\left| \vec{b} \right|\] . 

 
 

 


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then write the value of \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 .\]

 

 


If \[\vec{a}\] is a unit vector such that \[\vec{a} \times \hat{ i }  = \hat{ j }  , \text{ find }  \vec{a} . \hat{ i } \] .

 

If  \[\vec{c}\] is a unit vector perpendicular to the vectors \[\vec{a} \text{ and } \vec{b} ,\]  write another unit vector perpendicular to \[\vec{a} \text{ and }  \vec{b} .\]

 
 

 


Find the angle between two vectors \[\vec{a} \text{ and }  \vec{b}\] with magnitudes 1 and 2 respectively and when \[\left| \vec{a} \times \vec{b} \right| = \sqrt{3} .\]

 
 

Find λ, if \[\left( 2 \hat{ i }  + 6 \hat{ j }  + 14 \hat{ k }  \right) \times \left( \hat{ i }  - \lambda \hat{ j } + 7 \hat{ k }  \right) = \vec{0} .\]

 

Write the value of \[\left( \hat{ i }  \times \hat{ j }  \right) \cdot \hat{ k }  + \left( \hat{ j } + \hat{ k }  \right) \cdot \hat{ j } \]

 

Find a vector of magnitude \[\sqrt{171}\]  which is perpendicular to both of the vectors \[\vec{a} = \hat{ i } + 2 \hat{ j }  - 3 \hat{ k } \]  and  \[\vec{a} = \hat{ i } + 2 \hat{ j }  - 3 \hat{ k } \] . 

 
 

The vector \[\vec{b} = 3 \hat { i }+ 4 \hat {k }\] is to be written as the sum of a vector \[\vec{\alpha}\] parallel to \[\vec{a} = \hat {i} + \hat {j}\] and a vector \[\vec{\beta}\] perpendicular to \[\vec{a}\]. Then \[\vec{\alpha} =\]


A unit vector perpendicular to both \[\hat{ i }  + \hat{ j } \text{ and }  \hat{ j } + \hat{ k } \] is

 

If \[\hat{ i }  , \hat{ j }  , \hat{ k } \] are unit vectors, then


(a)  If `veca  =  hati - 2j + 3veck , vecb = 2hati + 3hatj - 5hatk,` prove that `veca and vecaxxvecb`  are perpendicular.


The value of λ for which the two vectors `2hati - hatj + 2hatk` and `3hati + λhatj + hatk` are perpendicular is ______.


Let `veca = hati + hatj, vecb = hati - hatj` and `vecc = hati + hatj + hatk`. If `hatn` is a unit vector such that `veca.hatn` = 0 and `vecb.hatn` = 0, then find `|vecc.hatn|`.


Let `veca = 2hati + hatj - 2hatk, vecb = hati + hatj`. If `vecc` is a vector such that `veca . vecc = \|vecc|, |vecc - veca| = 2sqrt(2)` and the angle between `veca xx vecb` and `vecc` is 30°, then `|(veca xx vecb) xx vecc|` equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×