हिंदी

If → a is any vector, then ( → a × ^ i ) 2 + ( → a × ^ j ) 2 + ( → a × ^ k ) 2 = - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\vec{a}\] is any vector, then \[\left( \vec{a} \times \hat{ i }  \right)^2 + \left( \vec{a} \times \hat{ j } \right)^2 + \left( \vec{a} \times \hat{ k }  \right)^2 =\]

विकल्प

  • \[\vec{a}^2\]

     

  • \[2 \vec{a}^2\]

  • \[3 \vec{a}^2\]

     

  • \[4 \vec{a}^2\]

MCQ

उत्तर

\[2 \vec{a}^2\] 

\[\text{ Let }  \vec{a} = a_1 \hat{ i }  + a_2 \hat{ j }  + a_3 \hat{ k }  \]

\[ \vec{a} \times \hat{ i }  = \begin{vmatrix}\hat{ i }  & \hat{ j }  & \hat{ k }  \\ a_1 & a_2 & a_3 \\ 1 & 0 & 0\end{vmatrix}\]

\[ = a_3 \hat{ j }  - a_2 \hat{ k }  \]

\[ \Rightarrow \left( \vec{a} \times \hat{ i } \right)^2 = \left( a_3 \hat{ j }  - a_2 \hat{ k }  \right)^2 \]

\[ = {a_3}^2 \left| \hat{ j  } \right|^2 + {a_2}^2 \left| \hat{ k } \right|^2 - 2 a_3 a_2 \left( \hat{ j } . \hat{ k }  \right)\]

\[ = {a_3}^2 + {a_2}^2 (\because \hat{ j }  . \hat{ k }  =0) . . . (1)\]

\[ \therefore \vec{a} \times \hat{ j } = \begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ a_1 & a_2 & a_3 \\ 0 & 1 & 0\end{vmatrix}\]

\[ = - a_3 \hat{ i } + a_1 \hat{ k }  \]

\[ \Rightarrow \left( \vec{a} \times \hat{ j }  \right)^2 = \left( - a_3 \hat{ i } + a_1 \hat{ k } \right)^2 \]

\[ = {a_3}^2 \left| \hat{ i } \right|^2 + {a_1}^2 \left| \hat{ k }  \right|^2 - 2 a_3 a_2 \left( \hat{ i} . \hat{ k } \right)\]

\[ = {a_3}^2 + {a_1}^2 (\because \hat{ i } .\hat{ k } =0) . . . (2)\]

\[ \therefore \vec{a} \times \hat{ k }  = \begin{vmatrix}\hat{ i }  & \hat{ j } & \hat{ k }  \\ a_1 & a_2 & a_3 \\ 0 & 0 & 1\end{vmatrix}\]

\[ = a_2 \hat{ i  } - a_1 \hat{ j }   \]

\[ \Rightarrow \left( \vec{a} \times k \right)^2 = \left( a_2 \hat{ i} - a_1 \hat{ j}  \right)^2 \]

\[ = {a_2}^2 \left| \hat{ i }  \right|^2 + {a_1}^2 \left| j \right|^2 + 2 a_1 a_2 \left( \hat{ i }  . \hat{ j },\right)\]

\[ = {a_2}^2 + {a_1}^2 (\because \hat{ i }  . \hat{ j }  =0) . . . (3)\]

\[\text{ Adding (1), (2) and (3), we get } \]

\[ \left( \vec{a} \times \hat{ i }  \right)^2 + \left( \vec{a} \times \hat{ j }  \right)^2 + \left( \vec{a} \times k \right)^2 = {a_3}^2 + {a_2}^2 + {a_3}^2 + {a_1}^2 + {a_2}^2 + {a_1}^2 \]

\[ = 2 \left( {a_1}^2 + {a_2}^2 + {a_3}^2 \right)\]

\[ = 2 \vec{a}^2 (\because\left| \vec{a} \right|=\sqrt{{a_1}^2 + {a_2}^2 + {a_3}^2})\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 25: Vector or Cross Product - MCQ [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 25 Vector or Cross Product
MCQ | Q 1 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find λ and μ if  `(2hati + 6hatj + 27hatk) xx (hati + lambdahatj + muhatk) = vec0`.


Area of a rectangle having vertices A, B, C, and D with position vectors `-hati + 1/2 hatj + 4hatk, hati + 1/2 hatj + 4hatk, and -hati - 1/2j + 4hatk,` respectively is ______.


If θ is the angle between two vectors `hati - 2hatj + 3hatk and 3hati - 2hatj + hatk` find `sin theta`


Let `veca = 4hati + 5hatj - hatk`, `vecb  = hati - 4hatj + 5hatk` and `vecc = 3hati + hatj - hatk`. Find a vector `vecd` which is perpendicular to both `vecc` and `vecb and vecd.veca = 21`


If \[\vec{a} = 3 \hat { i } + 4 \hat { j } \text{ and }  \vec{b} = \hat { i  } + \hat{ j }  + \hat{ k } ,\]  find the value of \[\left| \vec{a} \times \vec{b} \right| .\]

 

If \[\vec{a} = 2 \hat{ i } + \hat{ k }  , \vec{b} = \hat { i }  + \hat{ j } + \hat{ k }  ,\]  find the magnitude of  \[\vec{a} \times \vec{b} .\]

 

 


Find a unit vector perpendicular to the plane containing the vectors  \[\vec{a} = 2 \hat{ i } + \hat{ j }  + \hat{ k } \text{ and }  \vec{b} = \hat{ i } + 2 \hat{ j }  + \hat{ k } .\]

 


Find the magnitude of \[\vec{a} = \left( 3 \hat{ k }  + 4 \hat{ j } \right) \times \left( \hat{ i }  + \hat{ j }  - \hat{ k }  \right) .\]

 

Find the area of the parallelogram whose diagonals are  \[2 \hat{ i }+ \hat{ k } \text{ and } \hat{ i } + \hat{ j } + \hat{ k } \]

 


If \[\vec{a} = 2 \hat{ i }  + 5 \hat{ j }  - 7 \hat{ k }  , \vec{b} = - 3 \hat{ i } + 4 \hat{ j }  + \hat{ k }  \text{ and } \vec{c} = \hat{ i }  - 2 \hat{ j }  - 3 \hat{ k }  ,\] compute \[\left( \vec{a} \times \vec{b} \right) \times \vec{c} \text{ and }  \vec{a} \times \left( \vec{b} \times \vec{c} \right)\]  and verify that these are not equal.

 
 
 

\[\text{ If }  \left| \vec{a} \right| = 13, \left| \vec{b} \right| = 5 \text{ and }  \vec{a} . \vec{b} = 60, \text{ then find }  \left| \vec{a} \times \vec{b} \right| .\]

 


if \[\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq 0,\]  then  show that \[\vec{a} + \vec{c} = m \vec{b} ,\]  where m is any scalar.

 
 

 


Find a unit vector perpendicular to the plane ABC, where the coordinates of AB and Care A (3, −1, 2), B (1, −1, −3) and C (4, −3, 1).


if \[\vec{a} = \hat{ i }- 2\hat{ j }  + 3 \hat{ k }  , \text{ and }  \vec{b} = 2 \hat{ i }  + 3 \hat{ j }  - 5 \hat{ k }  ,\]  then find \[\vec{a} \times \vec{b} .\]  Verify th at \[\vec{a} \text{ and }  \vec{a} \times \vec{b}\] are perpendicular to each other.

 
 
 

 


If  \[\vec{p} \text{ and }  \vec{q}\] are unit vectors forming an angle of 30°; find the area of the parallelogram having \[\vec{a} = \vec{p} + 2 \vec{q} \text{ and }  \vec{b} = 2 \vec{p} + \vec{q}\] as its diagonals.

 
 

 


For any two vectors \[\vec{a} \text{ and }  \vec{b}\] , prove that \[\left| \vec{a} \times \vec{b} \right|^2 = \begin{vmatrix}\vec{a} . \vec{a} & & \vec{a} . \vec{b} \\ \vec{b} . \vec{a} & & \vec{b} . \vec{b}\end{vmatrix}\]

 
 

Find a unit vector perpendicular to each of the vectors \[\vec{a} + \vec{b} \text{ and }  \vec{a} - \vec{b} , \text{ where }  \vec{a} = 3 \hat{ i }  + 2 \hat{ j }  + 2 \hat{ k }  \text{ and }  \vec{b} = \hat{ i } + 2 \hat{ j }  - 2 \hat{ k }  .\]

 

Write the value of  \[\hat{ i } . \left( \hat{ j } \times \hat{ k }  \right) + \hat{ j }  . \left( \hat{ k } \times \hat{ i }  \right) + \hat{ k }  . \left( \hat{ i }  \times \hat{ j }  \right) .\]

 


Vectors  \[\vec{a} \text{ and }  \vec{b}\] \[\left| \vec{a} \right| = \sqrt{3}, \left| \vec{b} \right| = \frac{2}{3}\text{ and } \left( \vec{a} \times \vec{b} \right)\]  is a unit vector. Write the angle between \[\vec{a} \text{ and } \vec{b}\] .

 


If \[\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}\] and \[\vec{a} \times \vec{b} = \vec{a} \times \vec{c,} \vec{a} \neq 0,\] then


The vector \[\vec{b} = 3 \hat { i }+ 4 \hat {k }\] is to be written as the sum of a vector \[\vec{\alpha}\] parallel to \[\vec{a} = \hat {i} + \hat {j}\] and a vector \[\vec{\beta}\] perpendicular to \[\vec{a}\]. Then \[\vec{\alpha} =\]


If \[\vec{a,} \vec{b}\] represent the diagonals of a rhombus, then


Vectors \[\vec{a} \text{ and }  \vec{b}\] are inclined at angle θ = 120°. If \[\left| \vec{a} \right| = 1, \left| \vec{b} \right| = 2,\] then  \[\left[ \left( \vec{a} + 3 \vec{b} \right) \times \left( 3 \vec{a} - \vec{b} \right) \right]^2\]  is equal to 

 
  

The value of \[\left( \vec{a} \times \vec{b} \right)^2\] is 

 

The value of  \[\hat{ i }  \cdot \left( \hat{ j }  \times \hat{ k }  \right) + \hat{ j }  \cdot \left( \hat{ i }  \times \hat{ k }  \right) + \hat{ k }  \cdot \left( \hat{ i }  \times \hat{ j }  \right),\]  is 


The value of λ for which the two vectors `2hati - hatj + 2hatk` and `3hati + λhatj + hatk` are perpendicular is ______.


The two adjacent sides of a parallelogram are represented by vectors `2hati - 4hatj + 5hatk` and `hati - 2hatj - 3hatk`. Find the unit vector parallel to one of its diagonals, Also, find the area of the parallelogram.


Let `hata` and `hatb` be two unit vectors such that the angle between them is `π/4`. If θ is the angle between the vectors `(hata + hatb)` and `(hata xx 2hatb + 2(hata xx hatb))`, then the value of 164 cos2θ is equal to ______.


Let `veca = 2hati + hatj - 2hatk, vecb = hati + hatj`. If `vecc` is a vector such that `veca . vecc = \|vecc|, |vecc - veca| = 2sqrt(2)` and the angle between `veca xx vecb` and `vecc` is 30°, then `|(veca xx vecb) xx vecc|` equals ______.


If the angle between `veca` and `vecb` is `π/3` and `|veca xx vecb| = 3sqrt(3)`, then the value of `veca.vecb` is ______.


If `veca` is a unit vector perpendicular to `vecb` and `(veca + 2vecb).(3veca - vecb) = -5`, find `|vecb|`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×