Advertisements
Advertisements
प्रश्न
If \[\vec{a} = 2 \hat{ i } + 5 \hat{ j } - 7 \hat{ k } , \vec{b} = - 3 \hat{ i } + 4 \hat{ j } + \hat{ k } \text{ and } \vec{c} = \hat{ i } - 2 \hat{ j } - 3 \hat{ k } ,\] compute \[\left( \vec{a} \times \vec{b} \right) \times \vec{c} \text{ and } \vec{a} \times \left( \vec{b} \times \vec{c} \right)\] and verify that these are not equal.
उत्तर
\[\text{ Given } : \]
\[ \vec{a} = 2 \hat{ i } + 5 \hat{ j } - 7 \hat{ k }\]
\[ \vec{b} = - 3 \hat{ i } + 4 \hat{ j } + \hat{ k } \]
\[ \vec{c} = \hat{ i } - 2 \hat{ j } - 3 \hat{ k } \]
\[ \therefore \vec{a} \times \vec{b} = \begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ 2 & 5 & - 7 \\ - 3 & 4 & 1\end{vmatrix}\]
\[ = \left( 5 + 28 \right) \hat{ i } - \left( 2 - 21 \right) \hat{ j } + \left( 8 + 15 \right) \hat{ k } \]
\[ = 33 \hat{ i } + 19 \hat{ j }+ 23 \hat{ k } \]
\[ \Rightarrow \left( \vec{a} \times \vec{b} \right) \times \vec{c} = \begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ 33 & 19 & 23 \\ 1 & - 2 & - 3\end{vmatrix}\]
\[ = \left( - 57 + 46 \right) \hat{ i } - \left( - 99 - 23 \right) \hat{ j } + \left( - 66 - 19 \right) \hat{ k } \]
\[ \Rightarrow \left( \vec{a} \times \vec{b} \right) \times \vec{c} = - 11 \hat{ i } + 122 \hat{ j } - 85 \hat{ k} . . . (1)\]
\[ \therefore \vec{b} \times \vec{c} = \begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ - 3 & 4 & 1 \\ 1 & - 2 & - 3\end{vmatrix}\]
\[ = \left( - 12 + 2 \right) \hat{ i } - \left( 9 - 1 \right) \hat{ j } + \left( 6 - 4 \right) \hat{ k } \]
\[ = - 10 \hat{ i } - 8 \hat{ j }+ 2 \hat{ k } \]
\[ \Rightarrow \vec{a} \times \left( \vec{b} \times \vec{c} \right) = \begin{vmatrix}\hat{ i } & \hat{ j } & \hat { k } \\ 2 & 5 & - 7 \\ - 10 & - 8 & 2\end{vmatrix}\]
\[ = \left( 10 - 56 \right) \hat{ i } - \left( 4 - 70 \right) \hat{ j } + \left( - 16 + 50 \right) \hat{ k } \]
\[ \Rightarrow \vec{a} \times \left( \vec{b} \times \vec{c} \right) = - 46 \hat{ i } + 66 \hat{ j } + 34 \hat{ k } . . . (2)\]
\[\text{ From (1) and (2), we get } \]
\[\left( \vec{a} \times \vec{b} \right) \times \vec{c} \neq \vec{a} \times \left( \vec{b} \times \vec{c} \right)\]
APPEARS IN
संबंधित प्रश्न
If `veca = 2hati + 2hatj + 3hatk, vecb = -veci + 2hatj + hatk and vecc = 3hati + hatj` are such that `veca + lambdavecb` is perpendicular to `vecc`, then find the value of λ.
Find λ and μ if `(2hati + 6hatj + 27hatk) xx (hati + lambdahatj + muhatk) = vec0`.
Area of a rectangle having vertices A, B, C, and D with position vectors `-hati + 1/2 hatj + 4hatk, hati + 1/2 hatj + 4hatk, and -hati - 1/2j + 4hatk,` respectively is ______.
If θ is the angle between two vectors `hati - 2hatj + 3hatk and 3hati - 2hatj + hatk` find `sin theta`
Find a unit vector perpendicular to both the vectors \[\vec{a} + \vec{b} \text { and } \vec{a} - \vec{b}\] ,where \[\vec{a} = \hat{i}+ \hat{j} + \hat{k} , \vec{b} =\hat {i} + 2 \hat{j} + 3 \hat{k}\].
Find a unit vector perpendicular to both the vectors \[4 \hat{ i } - \hat{ j } + 3 \hat{ k } \text{ and } - 2 \hat{ i } + \hat{ j } - 2 \hat{ k } .\]
Find a unit vector perpendicular to the plane containing the vectors \[\vec{a} = 2 \hat{ i } + \hat{ j } + \hat{ k } \text{ and } \vec{b} = \hat{ i } + 2 \hat{ j } + \hat{ k } .\]
Find the area of the parallelogram determined by the vector \[2 \hat{ i } \text{ and } 3 \hat{ j } \] .
Find the area of the parallelogram determined by the vector \[2 \hat{ i } + \hat{ j } + 3 \hat{ k } \text{ and } \hat{ i } - \hat{ j } \] .
Find the area of the parallelogram determined by the vector \[3 \hat{ i } + \hat{ j } - 2 \hat{ k } \text{ and } \hat{ i } - 3 \hat{ j } + 4 \hat{ k } \] .
if \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 7 \text{ and } \vec{a} \times \vec{b} = 3 \hat{ i } + 2 \hat{ j } + 6 \hat{ k } ,\] find the angle between \[\vec{a} \text{ and } \vec{b} .\]
if \[\vec{a} = \hat{ i }- 2\hat{ j } + 3 \hat{ k } , \text{ and } \vec{b} = 2 \hat{ i } + 3 \hat{ j } - 5 \hat{ k } ,\] then find \[\vec{a} \times \vec{b} .\] Verify th at \[\vec{a} \text{ and } \vec{a} \times \vec{b}\] are perpendicular to each other.
Define \[\vec{a} \times \vec{b}\] and prove that \[\left| \vec{a} \times \vec{b} \right| = \left( \vec{a} . \vec{b} \right)\] tan θ, where θ is the angle between \[\vec{a} \text{ and } \vec{b}\] .
Find the area of the triangle formed by O, A, B when \[\vec{OA} = \hat{ i } + 2 \hat{ j } + 3 \hat{ k } , \vec{OB} = - 3 \hat{ i } - 2 \hat{ j }+ \hat{ k } .\]
Using vectors find the area of the triangle with vertices, A (2, 3, 5), B (3, 5, 8) and C (2, 7, 8).
Write the value of \[\hat{ i } . \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } . \left( \hat{ k } \times \hat{ i } \right) + \hat{ k } . \left( \hat{ j } \times \hat{ i } \right) .\]
Write the value of \[\hat{ i } . \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } . \left( \hat{ k } \times \hat{ i } \right) + \hat{ k } . \left( \hat{ i } \times \hat{ j } \right) .\]
For any two vectors \[\vec{a}\] and \[\vec{b}\] , find \[\vec{a} . \left( \vec{b} \times \vec{a} \right) .\]
Write a unit vector perpendicular to \[\hat{ i } + \hat{ j } \text{ and } \hat{ j } + \hat{ k } .\]
If \[\vec{r} = x \hat{ i } + y \hat{ j } + z \hat{ k } ,\] then write the value of \[\left| \vec{r} \times \hat{ i } \right|^2 .\]
Vectors \[\vec{a} \text{ and } \vec{b}\] \[\left| \vec{a} \right| = \sqrt{3}, \left| \vec{b} \right| = \frac{2}{3}\text{ and } \left( \vec{a} \times \vec{b} \right)\] is a unit vector. Write the angle between \[\vec{a} \text{ and } \vec{b}\] .
Write the value of the area of the parallelogram determined by the vectors \[2 \hat{ i } \text{ and } 3 \hat{ j } .\]
Find a vector of magnitude \[\sqrt{171}\] which is perpendicular to both of the vectors \[\vec{a} = \hat{ i } + 2 \hat{ j } - 3 \hat{ k } \] and \[\vec{a} = \hat{ i } + 2 \hat{ j } - 3 \hat{ k } \] .
Write the number of vectors of unit length perpendicular to both the vectors \[\vec{a} = 2 \hat{ i } + \hat{ j } + 2 \hat{ k } \text{ and } \vec{b} = \hat{ j } + \hat{ k } \] .
The vector \[\vec{b} = 3 \hat { i }+ 4 \hat {k }\] is to be written as the sum of a vector \[\vec{\alpha}\] parallel to \[\vec{a} = \hat {i} + \hat {j}\] and a vector \[\vec{\beta}\] perpendicular to \[\vec{a}\]. Then \[\vec{\alpha} =\]
If \[\vec{a} = \hat{ i } + \hat{ j } - \hat{ k } , \vec{b} = - \hat{ i } + 2\hat{ j } + 2 \hat{ k } \text{ and } \vec{c} = - \hat{ i } + 2 \hat{ j } - \hat{ k } ,\] then a unit vector normal to the vectors \[\vec{a} + \vec{b} \text{ and } \vec{b} - \vec{c}\] is
If θ is the angle between the vectors \[2 \hat{ i } - 2 \hat{ j} + 4 \hat{ k } \text{ and } 3 \hat{ i } + \hat { j } + 2 \hat{ k } ,\] then sin θ =
(a) If `veca = hati - 2j + 3veck , vecb = 2hati + 3hatj - 5hatk,` prove that `veca and vecaxxvecb` are perpendicular.
The number of vectors of unit length perpendicular to the vectors `vec"a" = 2hat"i" + hat"j" + 2hat"k"` and `vec"b" = hat"j" + hat"k"` is ______.
The two adjacent sides of a parallelogram are represented by vectors `2hati - 4hatj + 5hatk` and `hati - 2hatj - 3hatk`. Find the unit vector parallel to one of its diagonals, Also, find the area of the parallelogram.
Let `veca, vecb, vecc` be three vectors mutually perpendicular to each other and have same magnitude. If a vector `vecr` satisfies. `veca xx {(vecr - vecb) xx veca} + vecb xx {(vecr - vecc) xx vecb} + vecc xx {(vecr - veca) xx vecc} = vec0`, then `vecr` is equal to ______.
Find the area of a parallelogram whose adjacent sides are determined by the vectors `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.
If `veca` and `vecb` are two non-zero vectors such that `|veca xx vecb| = veca.vecb`, find the angle between `veca` and `vecb`.
If `veca` is a unit vector perpendicular to `vecb` and `(veca + 2vecb).(3veca - vecb) = -5`, find `|vecb|`.