हिंदी

Find a Unit Vector Perpendicular to Both the Vectors → a + → B and → a − → B ,Where → a = ^ I + ^ J + ^ K , → B = ^ I + 2 ^ J + 3 ^ K . - Mathematics

Advertisements
Advertisements

प्रश्न

Find a unit vector perpendicular to both the vectors \[\vec{a} + \vec{b} \text { and } \vec{a} - \vec{b}\] ,where \[\vec{a} = \hat{i}+ \hat{j} + \hat{k} , \vec{b} =\hat {i} + 2 \hat{j} + 3 \hat{k}\].

उत्तर

Let the unit vector be \[\vec{r}\] = \[x \hat{i} + y \hat{j} + z \hat{k}\].

\[\Rightarrow \sqrt{x^2 + y^2 + z^2} = 1\]

\[ \Rightarrow x^2 + y^2 + z^2 =   1 . . . \left( 1 \right)\]

\[\vec{a} + \vec{b} = 2\hat {i} + 3 \hat{j} + 4 \hat{k} \] \[\text { and } \] \[ \vec{a} - \vec{b} = -\hat{ j } - 2 \hat{k} \]

Since 

\[\vec{r}\] is perpendicular to  \[\vec{a} + \vec{b}\] and \[\vec{a} - \vec{b}\] ,

\[\vec{r} . \left( \vec{a} + \vec{b} \right) = 0\] \[\text { and } \vec{r} . \left( \vec{a} - \vec{b} \right) = 0\]

\[\left( x\hat{ i} + y \hat{j} + z \hat{k} \right) . \left( 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \right) = 0\]

\[ \Rightarrow 2x + 3y + 4z = 0 . . . \left( 2 \right)\]

\[\text { and } \left( x \hat{i} + y \hat{j} + z \hat{k} \right) . \left( - \hat{j} - 2 \hat {k} \right) = 0\]

\[ \Rightarrow - y - 2z = 0 . . . \left( 3 \right)\]

\[\Rightarrow y = - 2z\]

\[\text { Putting the value of y in equation } \left( 2 \right), \text { we get }: \]

\[2x + 3\left( - 2z \right) + 4z = 0\]

\[ \Rightarrow x = z\]

\[\text { Substituting the values of x and y in equation }\left( 1 \right), \text { we get }:\]

\[z^2 + 4 z^2 + z^2 = 1\]

\[z = \pm \frac{1}{\sqrt{6}}\]

\[ \Rightarrow x = \pm \frac{1}{\sqrt{6}}\]

\[ \Rightarrow y = \mp \frac{2}{\sqrt{6}}\]

Hence the vectors are 

\[\frac{1}{\sqrt{6}}\hat{ i } - \frac{2}{\sqrt{6}} \hat{j} + \frac{1}{\sqrt{6}} \hat{k} \]

\[\text { and } \]\[ - \frac{1}{\sqrt{6}} \hat{i} + \frac{2}{\sqrt{6}} \hat{j} - \frac{1}{\sqrt{6}} \hat{k} \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) Foreign Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the area of the parallelogram whose adjacent sides are determined by the vector `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.


Let the vectors `veca` and `vecb` be such that `|veca| = 3` and `|vecb| = sqrt2/3`, then `veca xx vecb` is a unit vector, if the angle between `veca` and `vecb` is ______.


If \[\vec{a} = 2 \hat{ i } + \hat{ k }  , \vec{b} = \hat { i }  + \hat{ j } + \hat{ k }  ,\]  find the magnitude of  \[\vec{a} \times \vec{b} .\]

 

 


 Find a unit vector perpendicular to both the vectors  \[4 \hat{ i } - \hat{ j }  + 3 \hat{ k } \text{ and }  - 2 \hat{ i  } + \hat{ j }  - 2 \hat{ k }  .\]

 


Find the magnitude of \[\vec{a} = \left( 3 \hat{ k }  + 4 \hat{ j } \right) \times \left( \hat{ i }  + \hat{ j }  - \hat{ k }  \right) .\]

 

\[\text{ If }  \vec{ a } = 3 \hat{ i }- \hat{ j }  - 2 \hat{ k } \text{  and } \vec{b} = 2 \hat{ i }  + 3 \hat{ j } + \hat{ k }  , \text{ find }  \left( \vec{a} + 2 \vec{b} \right) \times \left( 2 \vec{a} - \vec{b} \right) .\]

 


Find the angle between two vectors \[\vec{a} \text{ and }  \vec{b}\] , if \[\left| \vec{a} \times \vec{b} \right| = \vec{a} \cdot \vec{b} .\]

 

What inference can you draw if \[\vec{a} \times \vec{b} = \vec{0} \text{ and }  \vec{a} \cdot \vec{b} = 0 .\]

 

If abc are the lengths of sides, BCCA and AB of a triangle ABC, prove that \[\vec{BC} + \vec{CA} + \vec{AB} = \vec{0}\]  and deduce that \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} .\]

 
 

Define  \[\vec{a} \times \vec{b}\] and prove that \[\left| \vec{a} \times \vec{b} \right| = \left( \vec{a} . \vec{b} \right)\] tan θ, where θ is the angle between \[\vec{a} \text{ and }  \vec{b}\] .

 
 

 


\[\text{ If }  \left| \vec{a} \right| = \sqrt{26}, \left| \vec{b} \right| = 7 \text{ and }  \left| \vec{a} \times \vec{b} \right| = 35, \text{ find }  \vec{a} . \vec{b} .\]

 


If either  \[\vec{a} = \vec{0} \text{ or }  \vec{b} = \vec{0} , \text{ then }  \vec{a} \times \vec{b} = \vec{0} .\]  Is the converse true? Justify your answer with an example.

 

Write the value  \[\left( \hat{ i }  \times \hat{ j }  \right) \cdot \hat{ k }  + \hat{ i }  \cdot \hat{ j }  .\]

 


Write the value of  \[\hat{ i } . \left( \hat{ j } \times \hat{ k }  \right) + \hat{ j }  . \left( \hat{ k } \times \hat{ i }  \right) + \hat{ k }  . \left( \hat{ j }  \times \hat{ i }  \right) .\]

 


Write the value of \[\hat{ i }  × \left( \hat{ j } + \hat{ k }  \right) + \hat{ j }   ×  \left( \hat{ k } + \hat{ i }  \right) + \hat{ k }  ×   \left( \hat{ i }  + \hat{ j }  \right) .\]

 

If \[\vec{a} = 3 \hat{ i }  - \hat{ j }  + 2 \hat{ k } \] and  \[\vec{b} = 2 \hat { i }  + \hat{ j }  - \hat{ k} ,\]  then find \[\left( \vec{a} \times \vec{b} \right) \vec{a} .\]

 


If \[\vec{r} = x \hat{ i } + y \hat{ j }  + z \hat{ k }  ,\] then write the value of \[\left| \vec{r} \times \hat{ i }  \right|^2 .\]

 

 


The unit vector perpendicular to the plane passing through points \[P\left( \hat{ i } - \hat{ j }  + 2 \hat{ k }  \right), Q\left( 2 \hat{ i } - \hat{ k } \right) \text{ and }  R\left( 2 \hat{ j }  + \hat{ k }  \right)\]  is 

 

The value of  \[\hat{ i }  \cdot \left( \hat{ j }  \times \hat{ k }  \right) + \hat{ j }  \cdot \left( \hat{ i }  \times \hat{ k }  \right) + \hat{ k }  \cdot \left( \hat{ i }  \times \hat{ j }  \right),\]  is 


(a)  If `veca  =  hati - 2j + 3veck , vecb = 2hati + 3hatj - 5hatk,` prove that `veca and vecaxxvecb`  are perpendicular.


Let `veca` and `vecb` be two unit vectors and θ is the angle between them, Then `veca + vecb` is a unit vector if-


If the vector `vecb = 3hatj + 4hatk` is written as the sum of a vector `vec(b_1)`, parallel to `veca = hati + hatj` and a vector `vec(b_2)`, perpendicular to `veca`, then `vec(b_1) xx vec(b_2)` is equal to ______.


If `|veca xx vecb| = sqrt(3)` and `veca.vecb` = – 3, then angle between `veca` and `vecb` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×