Advertisements
Advertisements
प्रश्न
Find a unit vector perpendicular to both the vectors \[\vec{a} + \vec{b} \text { and } \vec{a} - \vec{b}\] ,where \[\vec{a} = \hat{i}+ \hat{j} + \hat{k} , \vec{b} =\hat {i} + 2 \hat{j} + 3 \hat{k}\].
उत्तर
Let the unit vector be \[\vec{r}\] = \[x \hat{i} + y \hat{j} + z \hat{k}\].
\[\Rightarrow \sqrt{x^2 + y^2 + z^2} = 1\]
\[ \Rightarrow x^2 + y^2 + z^2 = 1 . . . \left( 1 \right)\]
\[\vec{a} + \vec{b} = 2\hat {i} + 3 \hat{j} + 4 \hat{k} \] \[\text { and } \] \[ \vec{a} - \vec{b} = -\hat{ j } - 2 \hat{k} \]
Since
\[\vec{r} . \left( \vec{a} + \vec{b} \right) = 0\] \[\text { and } \vec{r} . \left( \vec{a} - \vec{b} \right) = 0\]
\[\left( x\hat{ i} + y \hat{j} + z \hat{k} \right) . \left( 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \right) = 0\]
\[ \Rightarrow 2x + 3y + 4z = 0 . . . \left( 2 \right)\]
\[\text { and } \left( x \hat{i} + y \hat{j} + z \hat{k} \right) . \left( - \hat{j} - 2 \hat {k} \right) = 0\]
\[ \Rightarrow - y - 2z = 0 . . . \left( 3 \right)\]
\[\Rightarrow y = - 2z\]
\[\text { Putting the value of y in equation } \left( 2 \right), \text { we get }: \]
\[2x + 3\left( - 2z \right) + 4z = 0\]
\[ \Rightarrow x = z\]
\[\text { Substituting the values of x and y in equation }\left( 1 \right), \text { we get }:\]
\[z^2 + 4 z^2 + z^2 = 1\]
\[z = \pm \frac{1}{\sqrt{6}}\]
\[ \Rightarrow x = \pm \frac{1}{\sqrt{6}}\]
\[ \Rightarrow y = \mp \frac{2}{\sqrt{6}}\]
Hence the vectors are
\[\frac{1}{\sqrt{6}}\hat{ i } - \frac{2}{\sqrt{6}} \hat{j} + \frac{1}{\sqrt{6}} \hat{k} \]
\[\text { and } \]\[ - \frac{1}{\sqrt{6}} \hat{i} + \frac{2}{\sqrt{6}} \hat{j} - \frac{1}{\sqrt{6}} \hat{k} \]
APPEARS IN
संबंधित प्रश्न
Find the area of the parallelogram whose adjacent sides are determined by the vector `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.
Let the vectors `veca` and `vecb` be such that `|veca| = 3` and `|vecb| = sqrt2/3`, then `veca xx vecb` is a unit vector, if the angle between `veca` and `vecb` is ______.
If \[\vec{a} = 2 \hat{ i } + \hat{ k } , \vec{b} = \hat { i } + \hat{ j } + \hat{ k } ,\] find the magnitude of \[\vec{a} \times \vec{b} .\]
Find a unit vector perpendicular to both the vectors \[4 \hat{ i } - \hat{ j } + 3 \hat{ k } \text{ and } - 2 \hat{ i } + \hat{ j } - 2 \hat{ k } .\]
Find the magnitude of \[\vec{a} = \left( 3 \hat{ k } + 4 \hat{ j } \right) \times \left( \hat{ i } + \hat{ j } - \hat{ k } \right) .\]
Find the angle between two vectors \[\vec{a} \text{ and } \vec{b}\] , if \[\left| \vec{a} \times \vec{b} \right| = \vec{a} \cdot \vec{b} .\]
What inference can you draw if \[\vec{a} \times \vec{b} = \vec{0} \text{ and } \vec{a} \cdot \vec{b} = 0 .\]
If a, b, c are the lengths of sides, BC, CA and AB of a triangle ABC, prove that \[\vec{BC} + \vec{CA} + \vec{AB} = \vec{0}\] and deduce that \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} .\]
Define \[\vec{a} \times \vec{b}\] and prove that \[\left| \vec{a} \times \vec{b} \right| = \left( \vec{a} . \vec{b} \right)\] tan θ, where θ is the angle between \[\vec{a} \text{ and } \vec{b}\] .
If either \[\vec{a} = \vec{0} \text{ or } \vec{b} = \vec{0} , \text{ then } \vec{a} \times \vec{b} = \vec{0} .\] Is the converse true? Justify your answer with an example.
Write the value \[\left( \hat{ i } \times \hat{ j } \right) \cdot \hat{ k } + \hat{ i } \cdot \hat{ j } .\]
Write the value of \[\hat{ i } . \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } . \left( \hat{ k } \times \hat{ i } \right) + \hat{ k } . \left( \hat{ j } \times \hat{ i } \right) .\]
Write the value of \[\hat{ i } × \left( \hat{ j } + \hat{ k } \right) + \hat{ j } × \left( \hat{ k } + \hat{ i } \right) + \hat{ k } × \left( \hat{ i } + \hat{ j } \right) .\]
If \[\vec{a} = 3 \hat{ i } - \hat{ j } + 2 \hat{ k } \] and \[\vec{b} = 2 \hat { i } + \hat{ j } - \hat{ k} ,\] then find \[\left( \vec{a} \times \vec{b} \right) \vec{a} .\]
If \[\vec{r} = x \hat{ i } + y \hat{ j } + z \hat{ k } ,\] then write the value of \[\left| \vec{r} \times \hat{ i } \right|^2 .\]
The unit vector perpendicular to the plane passing through points \[P\left( \hat{ i } - \hat{ j } + 2 \hat{ k } \right), Q\left( 2 \hat{ i } - \hat{ k } \right) \text{ and } R\left( 2 \hat{ j } + \hat{ k } \right)\] is
The value of \[\hat{ i } \cdot \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } \cdot \left( \hat{ i } \times \hat{ k } \right) + \hat{ k } \cdot \left( \hat{ i } \times \hat{ j } \right),\] is
(a) If `veca = hati - 2j + 3veck , vecb = 2hati + 3hatj - 5hatk,` prove that `veca and vecaxxvecb` are perpendicular.
Let `veca` and `vecb` be two unit vectors and θ is the angle between them, Then `veca + vecb` is a unit vector if-
If the vector `vecb = 3hatj + 4hatk` is written as the sum of a vector `vec(b_1)`, parallel to `veca = hati + hatj` and a vector `vec(b_2)`, perpendicular to `veca`, then `vec(b_1) xx vec(b_2)` is equal to ______.
If `|veca xx vecb| = sqrt(3)` and `veca.vecb` = – 3, then angle between `veca` and `vecb` is ______.