हिंदी

If a, b, c are the lengths of sides, BC, CA and AB of a triangle ABC, prove that → B C + → C A + → A B = → 0 and deduce that a sin A = b sin B = c sin C . - Mathematics

Advertisements
Advertisements

प्रश्न

If abc are the lengths of sides, BCCA and AB of a triangle ABC, prove that BC+CA+AB=0  and deduce that asinA=bsinB=csinC.

 
 
योग

उत्तर

 We have 
BC=a
CA=b
AB=c
|a|=a
|b|=b( Length is always positive)
c=c
 Now ,
BC+CA+AB=0( Given )
a+b+c=0
a×(a+b+c)=a×0
a×a+a×b+a×c=0
0+a×bc×a=0
a×b=c×a
|a||b|sinC=|c||a|sinB
absinC=casinB
 Dividing both sides by abc,we get 
sinCc=sinBb...(1)
 Again ,
BC+CA+AB=0
a+b+c=0
b×(a+b+c)=b×0
b×a+b×b+b×c=0
a×b+0+b×c=0
a×b=b×c
|a||b|sinC=|b||c|sinA
absinC=bcsinA
 Dividing both sides by abc,we get 
sinCc=sinAa...(2)
 From (1) and (2), we get 
sinAa=sinBb=sinCc
asinA=bsinB=csinC

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 25: Vector or Cross Product - Exercise 25.1 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 25 Vector or Cross Product
Exercise 25.1 | Q 20 | पृष्ठ ३०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find a unit vector perpendicular to each of the vector  a +b and a -b, where a =3i^+2j^+2k^ and b=i^+2j^ -2k^.


Show that (a-b)×(a+b)=2(a×b).


Given that a.b=0 and a×b=0 What can you conclude about the vectors aandb?


Let a =4i^+5j^-k^, b =i^-4j^+5k^ and c=3i^+j^-k^. Find a vector d which is perpendicular to both c and bandd.a=21


If a=3i^+4j^ and b=i^+j^+k^,  find the value of |a×b|.

 

Find a unit vector perpendicular to the plane containing the vectors  a=2i^+j^+k^ and b=i^+2j^+k^.

 


Find a vector of magnitude 49, which is perpendicular to both the vectors  2i^+3j^+6k^ and 3i^6j^+2k^.

 


Find the area of the parallelogram determined by the vector 2i^ and 3j^ .

 


if |a|=2,|b|=7 and a×b=3i^+2j^+6k^,  find the angle between  a and b.

 


Find a unit vector perpendicular to the plane ABC, where the coordinates of AB and Care A (3, −1, 2), B (1, −1, −3) and C (4, −3, 1).


If  p and q are unit vectors forming an angle of 30°; find the area of the parallelogram having a=p+2q and b=2p+q as its diagonals.

 
 

 


Define  a×b and prove that |a×b|=(a.b) tan θ, where θ is the angle between a and b .

 
 

 


 If |a|=26,|b|=7 and |a×b|=35, find a.b.

 


Using vectors, find the area of the triangle with vertice A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5) .


Using vectors, find the area of the triangle with vertice A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1)  .    


Write the value  (i^×j^)k^+i^j^.

 


If   a and b are two vectors such that |a×b|=3 and a.b=1,  find the angle between.

 
 

 


If |a×b|2+(a.b)2=144  and |a|=4,  find |b|

 
 

 


If r=xi^+yj^+zk^, then write the value of |r×i^|2.

 

 


If a and b are two vectors such that |a.b|=|a×b|,  write the angle between a and b.

 
 

 


If a is a unit vector such that a×i^=j^, find a.i^ .

 

Find λ, if (2i^+6j^+14k^)×(i^λj^+7k^)=0.

 

Write the value of (i^×j^)k^+(j^+k^)j^

 

The vector b=3i^+4k^ is to be written as the sum of a vector α parallel to a=i^+j^ and a vector β perpendicular to a. Then α=


The unit vector perpendicular to the plane passing through points P(i^j^+2k^),Q(2i^k^) and R(2j^+k^)  is 

 

If a,b represent the diagonals of a rhombus, then


If a=i^+j^k^,b=i^+2j^+2k^ and c=i^+2j^k^,  then a unit vector normal to the vectors a+b and bc  is

 

If a=2i^3j^k^ and b=i^+4j^2k^, then a×b  is


If θ is the angle between the vectors 2i^2j^+4k^ and 3i^+j^+2k^,  then sin θ =

 

The value of (a×b)2 is 

 

(a)  If a = i^-2j+3k,b=2i^+3j^-5k^, prove that aanda×b  are perpendicular.


The value of λ for which the two vectors 2i^-j^+2k^ and 3i^+λj^+k^ are perpendicular is ______.


The two adjacent sides of a parallelogram are represented by vectors 2i^-4j^+5k^ and i^-2j^-3k^. Find the unit vector parallel to one of its diagonals, Also, find the area of the parallelogram.


Let a,b,c be three vectors mutually perpendicular to each other and have same magnitude. If a vector r satisfies. a×{(r-b)×a}+b×{(r-c)×b}+c×{(r-a)×c}=0, then r is equal to ______.


If the vector b=3j^+4k^ is written as the sum of a vector b1, parallel to a=i^+j^ and a vector b2, perpendicular to a, then b1×b2 is equal to ______.


If a×b=a×c where a,b and c are non-zero vectors, then prove that either b=c or a and (b-c) are parallel.


If a is a unit vector perpendicular to b and (a+2b).(3a-b)=-5, find |b|.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.