हिंदी

Using Vectors, Find the Area of the Triangle with Vertice A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1) . - Mathematics

Advertisements
Advertisements

प्रश्न

Using vectors, find the area of the triangle with vertice A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1)  .    

योग

उत्तर

 The vertices of the triangle are A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1).
Position vector of A = \[\hat{ i  }+ 2 \hat{ j } + 3 \hat{ k } \]

Position vector of B = \[2 \hat{ i } - \hat{ j }+ 4 \hat{ k } \]

Position vector of C = \[4 \hat{ i } + 5 \hat{ j }  - \hat{ k } \]

\[\vec{AB} = \left( 2 \hat{ i } - \hat{ j } + 4 \hat{ k } \right) - \left( \hat{ i } + 2 \hat{ j } + 3 \hat{ k } \right) = \hat{ i } - 3 \hat{ j }  + \hat{ k } \] 

\[\vec{AC} = \left( 4 \hat{ i } + 5 \hat{ j } - \hat{ k } \right) - \left( \hat{ i } + 2 \hat{ j } + 3 \hat{ k }  \right) = 3 \hat{ i } + 3 \hat{ j }  - 4 \hat{ k } \]

Now,

\[\vec{AB} \times \vec{AC} = \begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ 1 & - 3 & 1 \\ 3 & 3 & - 4\end{vmatrix} = 9 \hat{ i }  + 7 \hat{ j } + 12 \hat{ k } \]

∴ Area of ∆ABC = \[\frac{1}{2}\left| \vec{AB} \times \vec{AC} \right|\]

\[= \frac{1}{2}\left| 9 \hat{ i } + 7 \hat{ j } + 12 \hat{ k }  \right|\]

\[ = \frac{1}{2}\sqrt{9^2 + 7^2 + {12}^2}\]

\[ = \frac{1}{2}\sqrt{81 + 49 + 144}\]

\[ = \frac{\sqrt{274}}{2} \text{ square units } \]

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 25: Vector or Cross Product - Exercise 25.1 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 25 Vector or Cross Product
Exercise 25.1 | Q 34.2 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Area of a rectangle having vertices A, B, C, and D with position vectors `-hati + 1/2 hatj + 4hatk, hati + 1/2 hatj + 4hatk, and -hati - 1/2j + 4hatk,` respectively is ______.


If θ is the angle between two vectors `hati - 2hatj + 3hatk and 3hati - 2hatj + hatk` find `sin theta`


 Find a unit vector perpendicular to both the vectors  \[4 \hat{ i } - \hat{ j }  + 3 \hat{ k } \text{ and }  - 2 \hat{ i  } + \hat{ j }  - 2 \hat{ k }  .\]

 


Find a unit vector perpendicular to the plane containing the vectors  \[\vec{a} = 2 \hat{ i } + \hat{ j }  + \hat{ k } \text{ and }  \vec{b} = \hat{ i } + 2 \hat{ j }  + \hat{ k } .\]

 


\[\text{ If }  \vec{ a } = 3 \hat{ i }- \hat{ j }  - 2 \hat{ k } \text{  and } \vec{b} = 2 \hat{ i }  + 3 \hat{ j } + \hat{ k }  , \text{ find }  \left( \vec{a} + 2 \vec{b} \right) \times \left( 2 \vec{a} - \vec{b} \right) .\]

 


Find a vector whose length is 3 and which is perpendicular to the vector \[\vec{a} = 3 \hat{ i }  + \hat{ j  } - 4 \hat{ k }  \text{ and }  \vec{b} = 6 \hat{ i }  + 5 \hat{ j }  - 2 \hat{ k } .\]


Find the area of the parallelogram determined by the vector \[2 \hat{ i } + \hat{ j } + 3 \hat{ k }  \text{ and }  \hat{ i }  - \hat{ j } \] .

 


Find the area of the parallelogram whose diagonals are  \[4 \hat{ i } - \hat{ j }  - 3 \hat{ k }  \text{ and }  - 2 \hat{ j }  + \hat{ j }  - 2 \hat{ k } \]

 


\[\text{ If }  \left| \vec{a} \right| = 13, \left| \vec{b} \right| = 5 \text{ and }  \vec{a} . \vec{b} = 60, \text{ then find }  \left| \vec{a} \times \vec{b} \right| .\]

 


Find the angle between two vectors \[\vec{a} \text{ and }  \vec{b}\] , if \[\left| \vec{a} \times \vec{b} \right| = \vec{a} \cdot \vec{b} .\]

 

If abc are the lengths of sides, BCCA and AB of a triangle ABC, prove that \[\vec{BC} + \vec{CA} + \vec{AB} = \vec{0}\]  and deduce that \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} .\]

 
 

if \[\vec{a} = \hat{ i }- 2\hat{ j }  + 3 \hat{ k }  , \text{ and }  \vec{b} = 2 \hat{ i }  + 3 \hat{ j }  - 5 \hat{ k }  ,\]  then find \[\vec{a} \times \vec{b} .\]  Verify th at \[\vec{a} \text{ and }  \vec{a} \times \vec{b}\] are perpendicular to each other.

 
 
 

 


Find the area of the triangle formed by OAB when \[\vec{OA} = \hat{ i } + 2 \hat{ j }  + 3 \hat{ k }  , \vec{OB} = - 3 \hat{ i }  - 2 \hat{ j }+ \hat{ k }  .\]


Using vectors find the area of the triangle with vertices, A (2, 3, 5), B (3, 5, 8) and C (2, 7, 8).


If \[\vec{a} = 2 \hat{ i } - 3 \hat{ j  } + \hat{ k } , \vec{b} = -\hat{  i }  + \hat{ k } , \vec{c} = 2 \hat{ j }  - \hat{ k } \]  are three vectors, find the area of the parallelogram having diagonals \[\left( \vec{a} + \vec{b} \right)\]  and \[\left( \vec{b} + \vec{c} \right)\] .

 
 

If \[\vec{a} = a_1 \hat{ i } + a_2 \hat{ j } + a_3 \hat{ k }  , \vec{b} = b_1 \hat{ i }  + b_2 \hat{ j }  + b_3 \hat{ k }  \text{ and }  \vec{c} = c_1 \hat{ i } + c_2 \hat{ j }  + c_3 \hat{ k }  ,\]then verify that \[\vec{a} \times \left(  \vec{b} + \vec{c} \right) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} .\]


Find all vectors of magnitude \[10\sqrt{3}\] that are perpendicular to the plane of \[\hat{ i }  + 2 \hat{ j }  + \hat{ k } \] and \[- \hat { i }  + 3 \hat{ j }  + 4 \hat{ k } \] .

 

Write the expression for the area of the parallelogram having \[\vec{a} \text{ and } \vec{b}\] as its diagonals.

 
 

Write the value of \[\hat{ i }  \times \left(\hat{  j }  \times \hat{ k }  \right) .\]

 

If \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 = 144\]  and \[\left| \vec{a} \right| = 4,\]  find \[\left| \vec{b} \right|\] . 

 
 

 


If \[\vec{a} \text{ and }  \vec{b}\] are unit vectors such that \[\vec{a} \times \vec{b}\] is also a unit vector, find the angle between \[\vec{a} \text{ and } \vec{b}\] .

 
 

 


If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} . \vec{b} \right| = \left| \vec{a} \times \vec{b} \right|,\]  write the angle between \[\vec{a} \text{ and } \vec{b} .\]

 
 

 


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then write the value of \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 .\]

 

 


Find a vector of magnitude \[\sqrt{171}\]  which is perpendicular to both of the vectors \[\vec{a} = \hat{ i } + 2 \hat{ j }  - 3 \hat{ k } \]  and  \[\vec{a} = \hat{ i } + 2 \hat{ j }  - 3 \hat{ k } \] . 

 
 

Write the angle between the vectors  \[\vec{a} \times \vec{b}\]  and  \[\vec{b} \times \vec{a}\] .

 

 


The unit vector perpendicular to the plane passing through points \[P\left( \hat{ i } - \hat{ j }  + 2 \hat{ k }  \right), Q\left( 2 \hat{ i } - \hat{ k } \right) \text{ and }  R\left( 2 \hat{ j }  + \hat{ k }  \right)\]  is 

 

If \[\vec{a} = \hat{ i }  + \hat{ j }  - \hat{ k }  , \vec{b} = - \hat{ i }  + 2\hat{ j }  + 2 \hat{ k }  \text{ and }  \vec{c} = - \hat{ i } + 2 \hat{ j }  - \hat{ k }  ,\]  then a unit vector normal to the vectors \[\vec{a} + \vec{b} \text{ and }  \vec{b} - \vec{c}\]  is

 

If \[\left| \vec{a} \times \vec{b} \right| = 4, \left| \vec{a} \cdot \vec{b} \right| = 2, \text{ then }  \left| \vec{a} \right|^2 \left| \vec{b} \right|^2 =\]


The value of  \[\hat{ i }  \cdot \left( \hat{ j }  \times \hat{ k }  \right) + \hat{ j }  \cdot \left( \hat{ i }  \times \hat{ k }  \right) + \hat{ k }  \cdot \left( \hat{ i }  \times \hat{ j }  \right),\]  is 


The value of λ for which the two vectors `2hati - hatj + 2hatk` and `3hati + λhatj + hatk` are perpendicular is ______.


The number of vectors of unit length perpendicular to the vectors `vec"a" = 2hat"i" + hat"j" + 2hat"k"` and `vec"b" = hat"j" + hat"k"` is ______.


Find the area of the triangle with vertices A(1, l, 2), (2, 3, 5) and (1, 5, 5).


The two adjacent sides of a parallelogram are represented by vectors `2hati - 4hatj + 5hatk` and `hati - 2hatj - 3hatk`. Find the unit vector parallel to one of its diagonals, Also, find the area of the parallelogram.


If the vector `vecb = 3hatj + 4hatk` is written as the sum of a vector `vec(b_1)`, parallel to `veca = hati + hatj` and a vector `vec(b_2)`, perpendicular to `veca`, then `vec(b_1) xx vec(b_2)` is equal to ______.


Find the area of a parallelogram whose adjacent sides are determined by the vectors `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.


If `veca` and `vecb` are two non-zero vectors such that `|veca xx vecb| = veca.vecb`, find the angle between `veca` and `vecb`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×