हिंदी

If → a and → B Are Unit Vectors Such that → a × → B is Also a Unit Vector, Find the Angle Between → a and → B . - Mathematics

Advertisements
Advertisements

प्रश्न

If a and b are unit vectors such that a×b is also a unit vector, find the angle between a and b .

 
 

 

टिप्पणी लिखिए

उत्तर

 Let θ be the angle between a and b.

 Given :

|a×b|=1

|a|=1

|b|=1

 We know 

|a×b|=|a||b|sinθ

1=(1)(1)sinθ

sinθ=1

θ=π2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 25: Vector or Cross Product - very short answers [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 25 Vector or Cross Product
very short answers | Q 19 | पृष्ठ ३३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that (a-b)×(a+b)=2(a×b).


If either a =0  or b=0, then a×b =0. Is the converse true? Justify your answer with an example.


Let the vectors a and b be such that |a|=3 and |b|=23, then a×b is a unit vector, if the angle between a and b is ______.


If A, B, C are three non- collinear points with position vectors a,b,c, respectively, then show that the length of the perpendicular from Con AB is |(a×b)+(b×c)+(b× a)||(b- a)|


If a=3i^+4j^ and b=i^+j^+k^,  find the value of |a×b|.

 

 Find a unit vector perpendicular to both the vectors  4i^j^+3k^ and 2i^+j^2k^.

 


Find the magnitude of a=(3k^+4j^)×(i^+j^k^).

 

 If a=4i^+3j^+k^ and b=i^2k^, then find |2b^×a|.

 


Find a vector of magnitude 49, which is perpendicular to both the vectors  2i^+3j^+6k^ and 3i^6j^+2k^.

 


Find the area of the parallelogram determined by the vector 2i^ and 3j^ .

 


Find the area of the parallelogram whose diagonals are  4i^j^3k^ and 2j^+j^2k^

 


Find the area of the parallelogram whose diagonals are  2i^+k^ and i^+j^+k^

 


Find the area of the parallelogram whose diagonals are  3i^+4j^ and i^+j^+k^

 


 If |a|=2,|b|=5 and |a×b|=8, find ab.

 


 If |a|=26,|b|=7 and |a×b|=35, find a.b.

 


Find a unit vector perpendicular to each of the vectors a+b and ab, where a=3i^+2j^+2k^ and b=i^+2j^2k^.

 

Using vectors, find the area of the triangle with vertice A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1)  .    


If  |a×b|2+|ab|2=400 and  |a|=5,  then write the value of |b|.

 

Write the value  (i^×j^)k^+i^j^.

 


Write the value of  i^.(j^×k^)+j^.(k^×i^)+k^.(j^×i^).

 


Write the expression for the area of the parallelogram having a and b as its diagonals.

 
 

If a and b are two vectors of magnitudes 3 and 23  espectively such that a×b is a unit vector. Write the angle between a and b.

 
 
 

 


If   a and b are two vectors such that |a×b|=3 and a.b=1,  find the angle between.

 
 

 


If a is a unit vector such that a×i^=j^, find a.i^ .

 

Vectors  a and b |a|=3,|b|=23 and (a×b)  is a unit vector. Write the angle between a and b .

 


Write the value of the area of the parallelogram determined by the vectors   2i^ and 3j^.

 

Write the value of (i^×j^)k^+(j^+k^)j^

 

Write the number of vectors of unit length perpendicular to both the vectors a=2i^+j^+2k^ and b=j^+k^ .

 

If a is any vector, then (a×i^)2+(a×j^)2+(a×k^)2=


If ab=ac and a×b=a×c,a0, then


The vector b=3i^+4k^ is to be written as the sum of a vector α parallel to a=i^+j^ and a vector β perpendicular to a. Then α=


If a=i^+j^k^,b=i^+2j^+2k^ and c=i^+2j^k^,  then a unit vector normal to the vectors a+b and bc  is

 

If θ is the angle between any two vectors a¯ and b¯ and |a¯·b¯|=|a¯×b¯| then θ is equal to ______.


The value of λ for which the two vectors 2i^-j^+2k^ and 3i^+λj^+k^ are perpendicular is ______.


What is the sum of vector a=i^-2i^+k^,b=-2i^+4j^+5k^ and c=i^-6j^-7k^


Find the area of the triangle with vertices A(1, l, 2), (2, 3, 5) and (1, 5, 5).


Let a=2i^+j^-2k^,b=i^+j^. If c is a vector such that a.c=|c|,|c-a|=22 and the angle between a×b and c is 30°, then |(a×b)×c| equals ______.


Find the area of a parallelogram whose adjacent sides are determined by the vectors a=i^-j^+3k^ and b=2i^-7j^+k^.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.