Advertisements
Advertisements
प्रश्न
If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} . \vec{b} \right| = \left| \vec{a} \times \vec{b} \right|,\] write the angle between \[\vec{a} \text{ and } \vec{b} .\]
उत्तर
\[\text{ Let } \theta \text{ be the angle between
} a^\to \text{ and } \vec{b} . \]
\[\text{ We know } \]
\[\left| \vec{a} \times \vec{b} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \left| \sin \theta \right|\]
\[\left| \vec{a} . \vec{b} \right| = \left| \vec{a} \right| \left| \vec{b} \right|\left| \cos \theta \right|\]
\[\text{ Now, } \]
\[\left| \vec{a} \times \vec{b} \right| = \left| \vec{a} . \vec{b} \right| (\text{Given } )\]
\[ \Rightarrow \left| \vec{a} \right| \left| \vec{b} \right| \left| \sin \theta \right| = \left| \vec{a} \right| \left| \vec{b} \right| \left| \cos \theta \right|\]
\[ \Rightarrow \left| \sin \theta \right| = \left| \cos \theta \right|\]
\[ \Rightarrow \theta = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Find `|veca × vecb|`, if `veca = hati - 7hatj + 7hatk` and `vecb = 3hati - 2hatj + 2hatk`.
If a unit vector `veca` makes an angles `pi/3` with `hati, pi/4` with `hatj` and an acute angle θ with `hatk`, then find θ and, hence the compounds of `veca`.
Find λ and μ if `(2hati + 6hatj + 27hatk) xx (hati + lambdahatj + muhatk) = vec0`.
If either `veca = vec0` or `vecb = vec0`, then `veca xxvecb = vec0`. Is the converse true? Justify your answer with an example.
Area of a rectangle having vertices A, B, C, and D with position vectors `-hati + 1/2 hatj + 4hatk, hati + 1/2 hatj + 4hatk, and -hati - 1/2j + 4hatk,` respectively is ______.
\[\text{ If } \vec{a} = \hat { i } + 3 \hat { j } - 2 \hat { k } \text{ and } \vec{b} = - \hat { i } + 3 \hat { k } , \text{ find } \left| \vec{a} \times \vec{b} \right| .\]
Find the magnitude of \[\vec{a} = \left( 3 \hat{ k } + 4 \hat{ j } \right) \times \left( \hat{ i } + \hat{ j } - \hat{ k } \right) .\]
Find a vector of magnitude 49, which is perpendicular to both the vectors \[2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k } \text{ and } 3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } .\]
Find a vector whose length is 3 and which is perpendicular to the vector \[\vec{a} = 3 \hat{ i } + \hat{ j } - 4 \hat{ k } \text{ and } \vec{b} = 6 \hat{ i } + 5 \hat{ j } - 2 \hat{ k } .\]
Find the area of the parallelogram whose diagonals are \[4 \hat{ i } - \hat{ j } - 3 \hat{ k } \text{ and } - 2 \hat{ j } + \hat{ j } - 2 \hat{ k } \]
if \[\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq 0,\] then show that \[\vec{a} + \vec{c} = m \vec{b} ,\] where m is any scalar.
Define \[\vec{a} \times \vec{b}\] and prove that \[\left| \vec{a} \times \vec{b} \right| = \left( \vec{a} . \vec{b} \right)\] tan θ, where θ is the angle between \[\vec{a} \text{ and } \vec{b}\] .
Let \[\vec{a} = \hat{ i } + 4 \hat{ j } + 2 \hat{ k } , \vec{b} = 3 \hat{ i }- 2 \hat{ j } + 7 \hat{ k } \text{ and } \vec{c} = 2 \hat{ i } - \hat{ j } + 4 \hat{ k } .\] Find a vector \[\vec{d}\] which is perpendicular to both \[\vec{a} \text{ and } \vec{d}\] \[\text{ and } \vec{c} \cdot \vec{d} = 15 .\]
Using vectors, find the area of the triangle with vertice A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5) .
Using vectors, find the area of the triangle with vertice A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1) .
Write the value \[\left( \hat{ i } \times \hat{ j } \right) \cdot \hat{ k } + \hat{ i } \cdot \hat{ j } .\]
Write the value of \[\hat{ i } . \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } . \left( \hat{ k } \times \hat{ i } \right) + \hat{ k } . \left( \hat{ i } \times \hat{ j } \right) .\]
Write the value of \[\hat{ i } × \left( \hat{ j } + \hat{ k } \right) + \hat{ j } × \left( \hat{ k } + \hat{ i } \right) + \hat{ k } × \left( \hat{ i } + \hat{ j } \right) .\]
For any two vectors \[\vec{a}\] and \[\vec{b}\] , find \[\vec{a} . \left( \vec{b} \times \vec{a} \right) .\]
If \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 = 144\] and \[\left| \vec{a} \right| = 4,\] find \[\left| \vec{b} \right|\] .
If \[\vec{r} = x \hat{ i } + y \hat{ j } + z \hat{ k } ,\] then write the value of \[\left| \vec{r} \times \hat{ i } \right|^2 .\]
Find λ, if \[\left( 2 \hat{ i } + 6 \hat{ j } + 14 \hat{ k } \right) \times \left( \hat{ i } - \lambda \hat{ j } + 7 \hat{ k } \right) = \vec{0} .\]
Find a vector of magnitude \[\sqrt{171}\] which is perpendicular to both of the vectors \[\vec{a} = \hat{ i } + 2 \hat{ j } - 3 \hat{ k } \] and \[\vec{a} = \hat{ i } + 2 \hat{ j } - 3 \hat{ k } \] .
The vector \[\vec{b} = 3 \hat { i }+ 4 \hat {k }\] is to be written as the sum of a vector \[\vec{\alpha}\] parallel to \[\vec{a} = \hat {i} + \hat {j}\] and a vector \[\vec{\beta}\] perpendicular to \[\vec{a}\]. Then \[\vec{\alpha} =\]
If \[\vec{a,} \vec{b}\] represent the diagonals of a rhombus, then
A unit vector perpendicular to both \[\hat{ i } + \hat{ j } \text{ and } \hat{ j } + \hat{ k } \] is
If \[\left| \vec{a} \times \vec{b} \right| = 4, \left| \vec{a} \cdot \vec{b} \right| = 2, \text{ then } \left| \vec{a} \right|^2 \left| \vec{b} \right|^2 =\]
Find a unit vector perpendicular to both the vectors `veca and vecb` , where `veca = hat i - 7 hatj +7hatk` and `vecb = 3hati - 2hatj + 2hatk` .
The number of vectors of unit length perpendicular to the vectors `vec"a" = 2hat"i" + hat"j" + 2hat"k"` and `vec"b" = hat"j" + hat"k"` is ______.
What is the sum of vector `veca = hati - 2hati + hatk, vecb = - 2hati + 4hatj + 5hatk` and `vecc = hati - 6hatj - 7hatk`
Let `hata` and `hatb` be two unit vectors such that the angle between them is `π/4`. If θ is the angle between the vectors `(hata + hatb)` and `(hata xx 2hatb + 2(hata xx hatb))`, then the value of 164 cos2θ is equal to ______.
Let `veca, vecb, vecc` be three vectors mutually perpendicular to each other and have same magnitude. If a vector `vecr` satisfies. `veca xx {(vecr - vecb) xx veca} + vecb xx {(vecr - vecc) xx vecb} + vecc xx {(vecr - veca) xx vecc} = vec0`, then `vecr` is equal to ______.
If `|veca xx vecb| = sqrt(3)` and `veca.vecb` = – 3, then angle between `veca` and `vecb` is ______.
Find the area of the parallelogram whose diagonals are `hati - 3hatj + hatk` and `hati + hatj + hatk`.
If `veca xx vecb = veca xx vecc` where `veca, vecb` and `vecc` are non-zero vectors, then prove that either `vecb = vecc` or `veca` and `(vecb - vecc)` are parallel.