Advertisements
Advertisements
प्रश्न
The vector \[\vec{b} = 3 \hat { i }+ 4 \hat {k }\] is to be written as the sum of a vector \[\vec{\alpha}\] parallel to \[\vec{a} = \hat {i} + \hat {j}\] and a vector \[\vec{\beta}\] perpendicular to \[\vec{a}\]. Then \[\vec{\alpha} =\]
विकल्प
\[\frac{3}{2}\left( \hat { i} + \hat {j} \right)\]
\[\frac{2}{3}\left( \hat {i} + \hat {j} \right)\]
\[\frac{1}{2}\left(\hat { i} + \hat {j} \right)\]
\[\frac{1}{3}\left( \hat { i} + \hat {j} \right)\]
उत्तर
\[\frac{3}{2}\left( \hat { i} + \hat {j} \right)\]
Let:
\[ \vec{\alpha} = a_1 \hat {i} + a_2 \hat {j} + a_3 \hat {k} \]
\[ \vec{\beta} = b_1 \hat {i} + b_2 \hat {j} + b_3 \hat {k} \]
Now,
\[ \vec{b} =3 \hat {i} +4 \hat {k} = \vec{\alpha} + \vec{\beta} \text { (Given) }\]
\[ \Rightarrow 3\hat { i} + 0 \hat {j} + 4 \hat {k} = \left( a_1 + b_1 \right) \hat {i} + \left( a_2 + b_2 \right) \hat{j} + \left( a_3 + b_3 \right) \hat {k} \]
\[ \Rightarrow a_1 + b_1 = 3; a_2 + b_2 = 0; a_3 + b_3 = 4\]
\[ \Rightarrow a_1 + b_1 = 3; a_2 = - b_2 ; a_3 + b_3 = 4 . . . (1)\]
\[ \vec{a} = \hat {i} + \hat {j} \text {(Given)} \]
\[\text { Also,} \vec{\alpha} \text { is parallel to } \vec{a} .\]
\[ \Rightarrow \vec{\alpha} \times \vec{a} = \vec{0} \]
\[ \Rightarrow \begin{vmatrix}\text { i} & \hat { j } & \hat {k} \\ a_1 & a_2 & a_3 \\ 1 & 1 & 0\end{vmatrix} = \vec{0} \]
\[ \Rightarrow - a_3 \hat {i} + a_3 \hat { j} + \left( a_1 - a_2 \right) \hat {k} = 0 \hat { i} + 0 \hat { j } + 0 \hat {k} \]
\[ \Rightarrow a_3 = 0; a_1 - a_2 = 0\]
\[ \Rightarrow a_3 = 0; a_1 = a_2 . . . (2)\]
\[\text { Since } \vec{\beta}\text { is perpendicular to } \vec{a} ,\text { we get }\]
\[ \Rightarrow \vec{\beta} . \vec{a} = 0\]
\[ \Rightarrow \left( b_1\hat {i} + b_2 \hat {j} + b_3 \hat { k} \right) . \left(\hat { i } + \hat {j} \right) = 0\]
\[ \Rightarrow b_1 + b_2 = 0\]
\[ \Rightarrow b_1 = - b_2 . . . (3)\]
Solving (1), (2) and (3), we get
\[ a_1 = \frac{3}{2}; a_2 = \frac{3}{2}; a_3 = 0\]
\[\therefore \vec{\alpha} = a_1\hat{ i } + a_2 \hat { j } + a_3 \hat { k } \]
\[ = \frac{3}{2} \hat { i } + \frac{3}{2} \hat { j } + 0 \hat { k } \]
\[ = \frac{3}{2} \left( \hat { i }+ \hat { j } \right)\]
APPEARS IN
संबंधित प्रश्न
Find `|veca × vecb|`, if `veca = hati - 7hatj + 7hatk` and `vecb = 3hati - 2hatj + 2hatk`.
Given that `veca.vecb = 0` and `veca xx vecb = 0` What can you conclude about the vectors `veca and vecb`?
Find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5).
If A, B, C are three non- collinear points with position vectors `vec a, vec b, vec c`, respectively, then show that the length of the perpendicular from Con AB is `|(vec a xx vec b)+(vec b xx vec c) + (vec b xx vec a)|/|(vec b - vec a)|`
Find a unit vector perpendicular to both the vectors \[4 \hat{ i } - \hat{ j } + 3 \hat{ k } \text{ and } - 2 \hat{ i } + \hat{ j } - 2 \hat{ k } .\]
Find a unit vector perpendicular to the plane containing the vectors \[\vec{a} = 2 \hat{ i } + \hat{ j } + \hat{ k } \text{ and } \vec{b} = \hat{ i } + 2 \hat{ j } + \hat{ k } .\]
Find the magnitude of \[\vec{a} = \left( 3 \hat{ k } + 4 \hat{ j } \right) \times \left( \hat{ i } + \hat{ j } - \hat{ k } \right) .\]
Find a vector of magnitude 49, which is perpendicular to both the vectors \[2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k } \text{ and } 3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } .\]
Find the area of the parallelogram determined by the vector \[\hat{ i } - 3 \hat{ j } + \hat{ k } \text{ and } \hat{ i } + \hat{ j } + \hat{ k } .\]
if \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 7 \text{ and } \vec{a} \times \vec{b} = 3 \hat{ i } + 2 \hat{ j } + 6 \hat{ k } ,\] find the angle between \[\vec{a} \text{ and } \vec{b} .\]
What inference can you draw if \[\vec{a} \times \vec{b} = \vec{0} \text{ and } \vec{a} \cdot \vec{b} = 0 .\]
Find the area of the triangle formed by O, A, B when \[\vec{OA} = \hat{ i } + 2 \hat{ j } + 3 \hat{ k } , \vec{OB} = - 3 \hat{ i } - 2 \hat{ j }+ \hat{ k } .\]
Find a unit vector perpendicular to each of the vectors \[\vec{a} + \vec{b} \text{ and } \vec{a} - \vec{b} , \text{ where } \vec{a} = 3 \hat{ i } + 2 \hat{ j } + 2 \hat{ k } \text{ and } \vec{b} = \hat{ i } + 2 \hat{ j } - 2 \hat{ k } .\]
If \[\vec{a} = 2 \hat{ i } - 3 \hat{ j } + \hat{ k } , \vec{b} = -\hat{ i } + \hat{ k } , \vec{c} = 2 \hat{ j } - \hat{ k } \] are three vectors, find the area of the parallelogram having diagonals \[\left( \vec{a} + \vec{b} \right)\] and \[\left( \vec{b} + \vec{c} \right)\] .
The two adjacent sides of a parallelogram are \[2 \hat{ i } - 4 \hat{ j } + 5 \hat{ k } \text{ and } \hat{ i } - 2 \hat{ j } - 3\hat{ k } .\]\ Find the unit vector parallel to one of its diagonals. Also, find its area.
If \[\vec{a} = a_1 \hat{ i } + a_2 \hat{ j } + a_3 \hat{ k } , \vec{b} = b_1 \hat{ i } + b_2 \hat{ j } + b_3 \hat{ k } \text{ and } \vec{c} = c_1 \hat{ i } + c_2 \hat{ j } + c_3 \hat{ k } ,\]then verify that \[\vec{a} \times \left( \vec{b} + \vec{c} \right) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} .\]
Define vector product of two vectors.
Write the value of \[\hat{ i } . \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } . \left( \hat{ k } \times \hat{ i } \right) + \hat{ k } . \left( \hat{ j } \times \hat{ i } \right) .\]
Write the expression for the area of the parallelogram having \[\vec{a} \text{ and } \vec{b}\] as its diagonals.
For any two vectors \[\vec{a} \text{ and } \vec{b}\] write the value of \[\left( \vec{a} . \vec{b} \right)^2 + \left| \vec{a} \times \vec{b} \right|^2\] in terms of their magnitudes.
For any two vectors \[\vec{a}\] and \[\vec{b}\] , find \[\vec{a} . \left( \vec{b} \times \vec{a} \right) .\]
Write a unit vector perpendicular to \[\hat{ i } + \hat{ j } \text{ and } \hat{ j } + \hat{ k } .\]
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then write the value of \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 .\]
If \[\vec{a}\] is a unit vector such that \[\vec{a} \times \hat{ i } = \hat{ j } , \text{ find } \vec{a} . \hat{ i } \] .
Write the value of \[\left( \hat{ i } \times \hat{ j } \right) \cdot \hat{ k } + \left( \hat{ j } + \hat{ k } \right) \cdot \hat{ j } \]
Find a vector of magnitude \[\sqrt{171}\] which is perpendicular to both of the vectors \[\vec{a} = \hat{ i } + 2 \hat{ j } - 3 \hat{ k } \] and \[\vec{a} = \hat{ i } + 2 \hat{ j } - 3 \hat{ k } \] .
Vectors \[\vec{a} \text{ and } \vec{b}\] are inclined at angle θ = 120°. If \[\left| \vec{a} \right| = 1, \left| \vec{b} \right| = 2,\] then \[\left[ \left( \vec{a} + 3 \vec{b} \right) \times \left( 3 \vec{a} - \vec{b} \right) \right]^2\] is equal to
If \[\vec{a} = 2 \hat{ i } - 3 \hat{ j } - \hat{ k } \text{ and } \vec{b} = \hat{ i } + 4 \hat{ j } - 2 \hat{ k
} , \text{ then } \vec{a} \times \vec{b}\] is
If θ is the angle between the vectors \[2 \hat{ i } - 2 \hat{ j} + 4 \hat{ k } \text{ and } 3 \hat{ i } + \hat { j } + 2 \hat{ k } ,\] then sin θ =
The value of \[\left( \vec{a} \times \vec{b} \right)^2\] is
If θ is the angle between any two vectors `bara` and `barb` and `|bara · barb| = |bara xx barb|` then θ is equal to ______.
The value of λ for which the two vectors `2hati - hatj + 2hatk` and `3hati + λhatj + hatk` are perpendicular is ______.
What is the sum of vector `veca = hati - 2hati + hatk, vecb = - 2hati + 4hatj + 5hatk` and `vecc = hati - 6hatj - 7hatk`
Let `veca = hati + hatj, vecb = hati - hatj` and `vecc = hati + hatj + hatk`. If `hatn` is a unit vector such that `veca.hatn` = 0 and `vecb.hatn` = 0, then find `|vecc.hatn|`.
If the angle between `veca` and `vecb` is `π/3` and `|veca xx vecb| = 3sqrt(3)`, then the value of `veca.vecb` is ______.