English

The Vector → B = 3 ^ I + 4 ^ K is to Be Written as the Sum of a Vector → α Parallel to → a = ^ I + ^ J and a Vector → β Perpendicular to → a . Then → α = - Mathematics

Advertisements
Advertisements

Question

The vector \[\vec{b} = 3 \hat { i }+ 4 \hat {k }\] is to be written as the sum of a vector \[\vec{\alpha}\] parallel to \[\vec{a} = \hat {i} + \hat {j}\] and a vector \[\vec{\beta}\] perpendicular to \[\vec{a}\]. Then \[\vec{\alpha} =\]

Options

  • \[\frac{3}{2}\left( \hat { i} + \hat {j} \right)\]

  • \[\frac{2}{3}\left( \hat {i} + \hat {j} \right)\]

  • \[\frac{1}{2}\left(\hat { i} + \hat {j} \right)\]

  • \[\frac{1}{3}\left( \hat { i} + \hat {j} \right)\]

MCQ

Solution

\[\frac{3}{2}\left( \hat { i} + \hat {j} \right)\]

Let:

\[ \vec{\alpha} = a_1 \hat {i} + a_2 \hat {j} + a_3 \hat {k} \]

\[ \vec{\beta} = b_1 \hat {i} + b_2 \hat {j} + b_3 \hat {k} \]

Now,

\[ \vec{b} =3 \hat {i} +4 \hat {k} = \vec{\alpha} + \vec{\beta} \text { (Given) }\]

\[ \Rightarrow 3\hat {  i} + 0 \hat {j} + 4 \hat {k} = \left( a_1 + b_1 \right) \hat {i} + \left( a_2 + b_2 \right) \hat{j} + \left( a_3 + b_3 \right) \hat {k} \]

\[ \Rightarrow a_1 + b_1 = 3; a_2 + b_2 = 0; a_3 + b_3 = 4\]

\[ \Rightarrow a_1 + b_1 = 3; a_2 = - b_2 ; a_3 + b_3 = 4 . . . (1)\]

\[ \vec{a} = \hat {i} + \hat {j} \text {(Given)} \]

\[\text { Also,} \vec{\alpha} \text { is parallel to } \vec{a} .\]

\[ \Rightarrow \vec{\alpha} \times \vec{a} = \vec{0} \]

\[ \Rightarrow \begin{vmatrix}\text { i} & \hat { j } & \hat {k} \\ a_1 & a_2 & a_3 \\ 1 & 1 & 0\end{vmatrix} = \vec{0} \]

\[ \Rightarrow - a_3 \hat {i} + a_3 \hat { j} + \left( a_1 - a_2 \right) \hat {k} = 0 \hat { i} + 0 \hat { j } + 0 \hat {k} \]

\[ \Rightarrow a_3 = 0; a_1 - a_2 = 0\]

\[ \Rightarrow a_3 = 0; a_1 = a_2 . . . (2)\]

\[\text { Since } \vec{\beta}\text {  is perpendicular to } \vec{a} ,\text {  we get }\]

\[ \Rightarrow \vec{\beta} . \vec{a} = 0\]

\[ \Rightarrow \left( b_1\hat {i} + b_2 \hat {j} + b_3 \hat { k} \right) . \left(\hat { i } + \hat {j} \right) = 0\]

\[ \Rightarrow b_1 + b_2 = 0\]

\[ \Rightarrow b_1 = - b_2 . . . (3)\]

Solving (1), (2) and (3), we get

\[ a_1 = \frac{3}{2}; a_2 = \frac{3}{2}; a_3 = 0\]

\[\therefore \vec{\alpha} = a_1\hat{  i } + a_2 \hat { j } + a_3 \hat { k } \]

\[ = \frac{3}{2} \hat { i } + \frac{3}{2} \hat { j } + 0 \hat { k } \]

\[ = \frac{3}{2} \left( \hat { i }+ \hat { j } \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 25: Vector or Cross Product - MCQ [Page 35]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 25 Vector or Cross Product
MCQ | Q 3 | Page 35

RELATED QUESTIONS

If a unit vector `veca` makes an angles `pi/3` with `hati, pi/4` with `hatj` and an acute angle θ with `hatk`, then find θ and, hence the compounds of `veca`.


Show that `(veca - vecb) xx (veca + vecb) = 2(veca xx vecb)`.


Find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5).


 Find a unit vector perpendicular to both the vectors  \[4 \hat{ i } - \hat{ j }  + 3 \hat{ k } \text{ and }  - 2 \hat{ i  } + \hat{ j }  - 2 \hat{ k }  .\]

 


\[\text{ If }  \vec{a} = 4 \hat{ i }  + 3 \hat{ j }  + \hat{ k }  \text{ and }  \vec{b} = \hat{ i }  - 2 \hat{ k } ,\text{  then find }  \left| 2 \hat{ b } \times \vec{a} \right| .\]

 


\[\text{ If }  \vec{ a } = 3 \hat{ i }- \hat{ j }  - 2 \hat{ k } \text{  and } \vec{b} = 2 \hat{ i }  + 3 \hat{ j } + \hat{ k }  , \text{ find }  \left( \vec{a} + 2 \vec{b} \right) \times \left( 2 \vec{a} - \vec{b} \right) .\]

 


Find the area of the parallelogram determined by the vector \[2 \hat{ i }  \text{ and }  3 \hat{ j } \] .

 


Find the area of the parallelogram determined by the vector \[\hat{ i }  - 3 \hat{ j } + \hat{ k }  \text{ and }  \hat{ i }  + \hat{ j } + \hat{ k }  .\]

 


\[\text{ If }  \left| \vec{a} \right| = 2, \left| \vec{b} \right| = 5 \text{ and }  \left| \vec{a} \times \vec{b} \right| = 8, \text { find }  \vec{a} \cdot \vec{b} .\]

 


Given \[\vec{a} = \frac{1}{7}\left( 2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k }  \right), \vec{b} = \frac{1}{7}\left( 3 \hat{ i } - 6 \hat{ j }  + 2 \hat{ k }  \right), \vec{c} = \frac{1}{7}\left( 6 \hat{ i } + 2 \hat{ j }  - 3 \hat{ k }\right), \hat{ i } , \hat{ j }  , \hat{ k } \] being a right handed orthogonal system of unit vectors in space, show that \[\vec{a} , \vec{b} , \vec{c}\] is also another system.

 
 

if \[\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq 0,\]  then  show that \[\vec{a} + \vec{c} = m \vec{b} ,\]  where m is any scalar.

 
 

 


Find a unit vector perpendicular to the plane ABC, where the coordinates of AB and Care A (3, −1, 2), B (1, −1, −3) and C (4, −3, 1).


For any two vectors \[\vec{a} \text{ and }  \vec{b}\] , prove that \[\left| \vec{a} \times \vec{b} \right|^2 = \begin{vmatrix}\vec{a} . \vec{a} & & \vec{a} . \vec{b} \\ \vec{b} . \vec{a} & & \vec{b} . \vec{b}\end{vmatrix}\]

 
 

Let \[\vec{a} = \hat{ i } + 4 \hat{ j }  + 2 \hat{ k } , \vec{b} = 3 \hat{ i }- 2 \hat{ j } + 7 \hat{ k }  \text{ and } \vec{c} = 2 \hat{ i } - \hat{ j }  + 4 \hat{ k }  .\]  Find a vector \[\vec{d}\] which is perpendicular to both \[\vec{a} \text{ and } \vec{d}\] \[\text{ and }  \vec{c} \cdot \vec{d} = 15 .\]

 
 

 


If \[\vec{a} = a_1 \hat{ i } + a_2 \hat{ j } + a_3 \hat{ k }  , \vec{b} = b_1 \hat{ i }  + b_2 \hat{ j }  + b_3 \hat{ k }  \text{ and }  \vec{c} = c_1 \hat{ i } + c_2 \hat{ j }  + c_3 \hat{ k }  ,\]then verify that \[\vec{a} \times \left(  \vec{b} + \vec{c} \right) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} .\]


Using vectors, find the area of the triangle with vertice A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5) .


Find all vectors of magnitude \[10\sqrt{3}\] that are perpendicular to the plane of \[\hat{ i }  + 2 \hat{ j }  + \hat{ k } \] and \[- \hat { i }  + 3 \hat{ j }  + 4 \hat{ k } \] .

 

Write the value of \[\hat{ i }  × \left( \hat{ j } + \hat{ k }  \right) + \hat{ j }   ×  \left( \hat{ k } + \hat{ i }  \right) + \hat{ k }  ×   \left( \hat{ i }  + \hat{ j }  \right) .\]

 

Write the expression for the area of the parallelogram having \[\vec{a} \text{ and } \vec{b}\] as its diagonals.

 
 

Write the value of \[\hat{ i }  \times \left(\hat{  j }  \times \hat{ k }  \right) .\]

 

If \[\vec{a} \text{ and }  \vec{b}\] are unit vectors such that \[\vec{a} \times \vec{b}\] is also a unit vector, find the angle between \[\vec{a} \text{ and } \vec{b}\] .

 
 

 


If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} . \vec{b} \right| = \left| \vec{a} \times \vec{b} \right|,\]  write the angle between \[\vec{a} \text{ and } \vec{b} .\]

 
 

 


Write the value of \[\left( \hat{ i }  \times \hat{ j }  \right) \cdot \hat{ k }  + \left( \hat{ j } + \hat{ k }  \right) \cdot \hat{ j } \]

 

Write the angle between the vectors  \[\vec{a} \times \vec{b}\]  and  \[\vec{b} \times \vec{a}\] .

 

 


If \[\vec{a} = \hat{ i }  + \hat{ j }  - \hat{ k }  , \vec{b} = - \hat{ i }  + 2\hat{ j }  + 2 \hat{ k }  \text{ and }  \vec{c} = - \hat{ i } + 2 \hat{ j }  - \hat{ k }  ,\]  then a unit vector normal to the vectors \[\vec{a} + \vec{b} \text{ and }  \vec{b} - \vec{c}\]  is

 

If \[\hat{ i }  , \hat{ j }  , \hat{ k } \] are unit vectors, then


If θ is the angle between the vectors \[2 \hat{ i }  - 2 \hat{ j}  + 4 \hat{ k }  \text{ and } 3 \hat{ i }  + \hat { j }  + 2 \hat{ k }  ,\]  then sin θ =

 

The value of  \[\hat{ i }  \cdot \left( \hat{ j }  \times \hat{ k }  \right) + \hat{ j }  \cdot \left( \hat{ i }  \times \hat{ k }  \right) + \hat{ k }  \cdot \left( \hat{ i }  \times \hat{ j }  \right),\]  is 


What is the sum of vector `veca = hati - 2hati + hatk, vecb = - 2hati + 4hatj + 5hatk` and `vecc = hati - 6hatj - 7hatk`


Find the area of the triangle with vertices A(1, l, 2), (2, 3, 5) and (1, 5, 5).


Let `veca` and `vecb` be two unit vectors and θ is the angle between them, Then `veca + vecb` is a unit vector if-


Let `hata` and `hatb` be two unit vectors such that the angle between them is `π/4`. If θ is the angle between the vectors `(hata + hatb)` and `(hata xx 2hatb + 2(hata xx hatb))`, then the value of 164 cos2θ is equal to ______.


Find the area of a parallelogram whose adjacent sides are determined by the vectors `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.


Find the area of the parallelogram whose diagonals are `hati - 3hatj + hatk` and `hati + hatj + hatk`.


If `veca xx vecb = veca xx vecc` where `veca, vecb` and `vecc` are non-zero vectors, then prove that either `vecb = vecc` or `veca` and `(vecb - vecc)` are parallel.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×