Advertisements
Advertisements
Question
The vector \[\vec{b} = 3 \hat { i }+ 4 \hat {k }\] is to be written as the sum of a vector \[\vec{\alpha}\] parallel to \[\vec{a} = \hat {i} + \hat {j}\] and a vector \[\vec{\beta}\] perpendicular to \[\vec{a}\]. Then \[\vec{\alpha} =\]
Options
\[\frac{3}{2}\left( \hat { i} + \hat {j} \right)\]
\[\frac{2}{3}\left( \hat {i} + \hat {j} \right)\]
\[\frac{1}{2}\left(\hat { i} + \hat {j} \right)\]
\[\frac{1}{3}\left( \hat { i} + \hat {j} \right)\]
Solution
\[\frac{3}{2}\left( \hat { i} + \hat {j} \right)\]
Let:
\[ \vec{\alpha} = a_1 \hat {i} + a_2 \hat {j} + a_3 \hat {k} \]
\[ \vec{\beta} = b_1 \hat {i} + b_2 \hat {j} + b_3 \hat {k} \]
Now,
\[ \vec{b} =3 \hat {i} +4 \hat {k} = \vec{\alpha} + \vec{\beta} \text { (Given) }\]
\[ \Rightarrow 3\hat { i} + 0 \hat {j} + 4 \hat {k} = \left( a_1 + b_1 \right) \hat {i} + \left( a_2 + b_2 \right) \hat{j} + \left( a_3 + b_3 \right) \hat {k} \]
\[ \Rightarrow a_1 + b_1 = 3; a_2 + b_2 = 0; a_3 + b_3 = 4\]
\[ \Rightarrow a_1 + b_1 = 3; a_2 = - b_2 ; a_3 + b_3 = 4 . . . (1)\]
\[ \vec{a} = \hat {i} + \hat {j} \text {(Given)} \]
\[\text { Also,} \vec{\alpha} \text { is parallel to } \vec{a} .\]
\[ \Rightarrow \vec{\alpha} \times \vec{a} = \vec{0} \]
\[ \Rightarrow \begin{vmatrix}\text { i} & \hat { j } & \hat {k} \\ a_1 & a_2 & a_3 \\ 1 & 1 & 0\end{vmatrix} = \vec{0} \]
\[ \Rightarrow - a_3 \hat {i} + a_3 \hat { j} + \left( a_1 - a_2 \right) \hat {k} = 0 \hat { i} + 0 \hat { j } + 0 \hat {k} \]
\[ \Rightarrow a_3 = 0; a_1 - a_2 = 0\]
\[ \Rightarrow a_3 = 0; a_1 = a_2 . . . (2)\]
\[\text { Since } \vec{\beta}\text { is perpendicular to } \vec{a} ,\text { we get }\]
\[ \Rightarrow \vec{\beta} . \vec{a} = 0\]
\[ \Rightarrow \left( b_1\hat {i} + b_2 \hat {j} + b_3 \hat { k} \right) . \left(\hat { i } + \hat {j} \right) = 0\]
\[ \Rightarrow b_1 + b_2 = 0\]
\[ \Rightarrow b_1 = - b_2 . . . (3)\]
Solving (1), (2) and (3), we get
\[ a_1 = \frac{3}{2}; a_2 = \frac{3}{2}; a_3 = 0\]
\[\therefore \vec{\alpha} = a_1\hat{ i } + a_2 \hat { j } + a_3 \hat { k } \]
\[ = \frac{3}{2} \hat { i } + \frac{3}{2} \hat { j } + 0 \hat { k } \]
\[ = \frac{3}{2} \left( \hat { i }+ \hat { j } \right)\]
APPEARS IN
RELATED QUESTIONS
If a unit vector `veca` makes an angles `pi/3` with `hati, pi/4` with `hatj` and an acute angle θ with `hatk`, then find θ and, hence the compounds of `veca`.
Show that `(veca - vecb) xx (veca + vecb) = 2(veca xx vecb)`.
Find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5).
Find a unit vector perpendicular to both the vectors \[4 \hat{ i } - \hat{ j } + 3 \hat{ k } \text{ and } - 2 \hat{ i } + \hat{ j } - 2 \hat{ k } .\]
Find the area of the parallelogram determined by the vector \[2 \hat{ i } \text{ and } 3 \hat{ j } \] .
Find the area of the parallelogram determined by the vector \[\hat{ i } - 3 \hat{ j } + \hat{ k } \text{ and } \hat{ i } + \hat{ j } + \hat{ k } .\]
Given \[\vec{a} = \frac{1}{7}\left( 2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k } \right), \vec{b} = \frac{1}{7}\left( 3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } \right), \vec{c} = \frac{1}{7}\left( 6 \hat{ i } + 2 \hat{ j } - 3 \hat{ k }\right), \hat{ i } , \hat{ j } , \hat{ k } \] being a right handed orthogonal system of unit vectors in space, show that \[\vec{a} , \vec{b} , \vec{c}\] is also another system.
if \[\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq 0,\] then show that \[\vec{a} + \vec{c} = m \vec{b} ,\] where m is any scalar.
Find a unit vector perpendicular to the plane ABC, where the coordinates of A, B and Care A (3, −1, 2), B (1, −1, −3) and C (4, −3, 1).
For any two vectors \[\vec{a} \text{ and } \vec{b}\] , prove that \[\left| \vec{a} \times \vec{b} \right|^2 = \begin{vmatrix}\vec{a} . \vec{a} & & \vec{a} . \vec{b} \\ \vec{b} . \vec{a} & & \vec{b} . \vec{b}\end{vmatrix}\]
Let \[\vec{a} = \hat{ i } + 4 \hat{ j } + 2 \hat{ k } , \vec{b} = 3 \hat{ i }- 2 \hat{ j } + 7 \hat{ k } \text{ and } \vec{c} = 2 \hat{ i } - \hat{ j } + 4 \hat{ k } .\] Find a vector \[\vec{d}\] which is perpendicular to both \[\vec{a} \text{ and } \vec{d}\] \[\text{ and } \vec{c} \cdot \vec{d} = 15 .\]
If \[\vec{a} = a_1 \hat{ i } + a_2 \hat{ j } + a_3 \hat{ k } , \vec{b} = b_1 \hat{ i } + b_2 \hat{ j } + b_3 \hat{ k } \text{ and } \vec{c} = c_1 \hat{ i } + c_2 \hat{ j } + c_3 \hat{ k } ,\]then verify that \[\vec{a} \times \left( \vec{b} + \vec{c} \right) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} .\]
Using vectors, find the area of the triangle with vertice A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5) .
Find all vectors of magnitude \[10\sqrt{3}\] that are perpendicular to the plane of \[\hat{ i } + 2 \hat{ j } + \hat{ k } \] and \[- \hat { i } + 3 \hat{ j } + 4 \hat{ k } \] .
Write the value of \[\hat{ i } × \left( \hat{ j } + \hat{ k } \right) + \hat{ j } × \left( \hat{ k } + \hat{ i } \right) + \hat{ k } × \left( \hat{ i } + \hat{ j } \right) .\]
Write the expression for the area of the parallelogram having \[\vec{a} \text{ and } \vec{b}\] as its diagonals.
Write the value of \[\hat{ i } \times \left(\hat{ j } \times \hat{ k } \right) .\]
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors such that \[\vec{a} \times \vec{b}\] is also a unit vector, find the angle between \[\vec{a} \text{ and } \vec{b}\] .
If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} . \vec{b} \right| = \left| \vec{a} \times \vec{b} \right|,\] write the angle between \[\vec{a} \text{ and } \vec{b} .\]
Write the value of \[\left( \hat{ i } \times \hat{ j } \right) \cdot \hat{ k } + \left( \hat{ j } + \hat{ k } \right) \cdot \hat{ j } \]
Write the angle between the vectors \[\vec{a} \times \vec{b}\] and \[\vec{b} \times \vec{a}\] .
If \[\vec{a} = \hat{ i } + \hat{ j } - \hat{ k } , \vec{b} = - \hat{ i } + 2\hat{ j } + 2 \hat{ k } \text{ and } \vec{c} = - \hat{ i } + 2 \hat{ j } - \hat{ k } ,\] then a unit vector normal to the vectors \[\vec{a} + \vec{b} \text{ and } \vec{b} - \vec{c}\] is
If \[\hat{ i } , \hat{ j } , \hat{ k } \] are unit vectors, then
If θ is the angle between the vectors \[2 \hat{ i } - 2 \hat{ j} + 4 \hat{ k } \text{ and } 3 \hat{ i } + \hat { j } + 2 \hat{ k } ,\] then sin θ =
The value of \[\hat{ i } \cdot \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } \cdot \left( \hat{ i } \times \hat{ k } \right) + \hat{ k } \cdot \left( \hat{ i } \times \hat{ j } \right),\] is
What is the sum of vector `veca = hati - 2hati + hatk, vecb = - 2hati + 4hatj + 5hatk` and `vecc = hati - 6hatj - 7hatk`
Find the area of the triangle with vertices A(1, l, 2), (2, 3, 5) and (1, 5, 5).
Let `veca` and `vecb` be two unit vectors and θ is the angle between them, Then `veca + vecb` is a unit vector if-
Let `hata` and `hatb` be two unit vectors such that the angle between them is `π/4`. If θ is the angle between the vectors `(hata + hatb)` and `(hata xx 2hatb + 2(hata xx hatb))`, then the value of 164 cos2θ is equal to ______.
Find the area of a parallelogram whose adjacent sides are determined by the vectors `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.
Find the area of the parallelogram whose diagonals are `hati - 3hatj + hatk` and `hati + hatj + hatk`.
If `veca xx vecb = veca xx vecc` where `veca, vecb` and `vecc` are non-zero vectors, then prove that either `vecb = vecc` or `veca` and `(vecb - vecc)` are parallel.