Advertisements
Advertisements
Question
For any two vectors \[\vec{a} \text{ and } \vec{b}\] , prove that \[\left| \vec{a} \times \vec{b} \right|^2 = \begin{vmatrix}\vec{a} . \vec{a} & & \vec{a} . \vec{b} \\ \vec{b} . \vec{a} & & \vec{b} . \vec{b}\end{vmatrix}\]
Solution
\[RHS=\begin{vmatrix}\vec{a} . \vec{a} & \vec{a} . \vec{b} \\ \vec{b} . \vec{a} & \vec{b} . \vec{b}\end{vmatrix}\]
\[ =\begin{vmatrix}\left| \vec{a} \right|^2 & \left| \vec{a} \right| \left| \vec{b} \right| \cos \theta \\ \left| \vec{a} \right| \left| \vec{b} \right| \cos \theta & \left| \vec{b} \right|^2\end{vmatrix}\]
\[ = \left| \vec{a} \right|^2 \left| \vec{b} \right|^2 - \left| \vec{a} \right|^2 \left| \vec{b} \right|^2 \cos^2 \theta\]
\[ = \left| \vec{a} \right|^2 \left| \vec{b} \right|^2 \left( 1 - \cos^2 \theta \right)\]
\[ = \left| \vec{a} \right|^2 \left| \vec{b} \right|^2 \sin^2 \theta\]
\[ = \left( \left| \vec{a} \right|\left| \vec{b} \right| \sin \theta \right)^2 \]
\[ = \left| \vec{a} \times \vec{b} \right|^2 \]
\[ = LHS\]
\[ \text{ Hence proved } . \]
APPEARS IN
RELATED QUESTIONS
If a unit vector `veca` makes an angles `pi/3` with `hati, pi/4` with `hatj` and an acute angle θ with `hatk`, then find θ and, hence the compounds of `veca`.
Given that `veca.vecb = 0` and `veca xx vecb = 0` What can you conclude about the vectors `veca and vecb`?
Find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5).
If \[\vec{a} = 3 \hat { i } + 4 \hat { j } \text{ and } \vec{b} = \hat { i } + \hat{ j } + \hat{ k } ,\] find the value of \[\left| \vec{a} \times \vec{b} \right| .\]
Find a unit vector perpendicular to the plane containing the vectors \[\vec{a} = 2 \hat{ i } + \hat{ j } + \hat{ k } \text{ and } \vec{b} = \hat{ i } + 2 \hat{ j } + \hat{ k } .\]
Find a vector of magnitude 49, which is perpendicular to both the vectors \[2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k } \text{ and } 3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } .\]
Find the area of the parallelogram determined by the vector \[2 \hat{ i } \text{ and } 3 \hat{ j } \] .
Find the area of the parallelogram whose diagonals are \[2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k } \text{ and } 3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } \]
Find the angle between two vectors \[\vec{a} \text{ and } \vec{b}\] , if \[\left| \vec{a} \times \vec{b} \right| = \vec{a} \cdot \vec{b} .\]
Find a unit vector perpendicular to the plane ABC, where the coordinates of A, B and Care A (3, −1, 2), B (1, −1, −3) and C (4, −3, 1).
if \[\vec{a} = \hat{ i }- 2\hat{ j } + 3 \hat{ k } , \text{ and } \vec{b} = 2 \hat{ i } + 3 \hat{ j } - 5 \hat{ k } ,\] then find \[\vec{a} \times \vec{b} .\] Verify th at \[\vec{a} \text{ and } \vec{a} \times \vec{b}\] are perpendicular to each other.
If \[\vec{p} \text{ and } \vec{q}\] are unit vectors forming an angle of 30°; find the area of the parallelogram having \[\vec{a} = \vec{p} + 2 \vec{q} \text{ and } \vec{b} = 2 \vec{p} + \vec{q}\] as its diagonals.
Using vectors find the area of the triangle with vertices, A (2, 3, 5), B (3, 5, 8) and C (2, 7, 8).
If \[\vec{a} = a_1 \hat{ i } + a_2 \hat{ j } + a_3 \hat{ k } , \vec{b} = b_1 \hat{ i } + b_2 \hat{ j } + b_3 \hat{ k } \text{ and } \vec{c} = c_1 \hat{ i } + c_2 \hat{ j } + c_3 \hat{ k } ,\]then verify that \[\vec{a} \times \left( \vec{b} + \vec{c} \right) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} .\]
Write the value of \[\hat{ i } × \left( \hat{ j } + \hat{ k } \right) + \hat{ j } × \left( \hat{ k } + \hat{ i } \right) + \hat{ k } × \left( \hat{ i } + \hat{ j } \right) .\]
Write the expression for the area of the parallelogram having \[\vec{a} \text{ and } \vec{b}\] as its diagonals.
If \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 = 144\] and \[\left| \vec{a} \right| = 4,\] find \[\left| \vec{b} \right|\] .
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors such that \[\vec{a} \times \vec{b}\] is also a unit vector, find the angle between \[\vec{a} \text{ and } \vec{b}\] .
If \[\vec{c}\] is a unit vector perpendicular to the vectors \[\vec{a} \text{ and } \vec{b} ,\] write another unit vector perpendicular to \[\vec{a} \text{ and } \vec{b} .\]
Vectors \[\vec{a} \text{ and } \vec{b}\] \[\left| \vec{a} \right| = \sqrt{3}, \left| \vec{b} \right| = \frac{2}{3}\text{ and } \left( \vec{a} \times \vec{b} \right)\] is a unit vector. Write the angle between \[\vec{a} \text{ and } \vec{b}\] .
Write the value of \[\left( \hat{ i } \times \hat{ j } \right) \cdot \hat{ k } + \left( \hat{ j } + \hat{ k } \right) \cdot \hat{ j } \]
Write the number of vectors of unit length perpendicular to both the vectors \[\vec{a} = 2 \hat{ i } + \hat{ j } + 2 \hat{ k } \text{ and } \vec{b} = \hat{ j } + \hat{ k } \] .
Write the angle between the vectors \[\vec{a} \times \vec{b}\] and \[\vec{b} \times \vec{a}\] .
If \[\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}\] and \[\vec{a} \times \vec{b} = \vec{a} \times \vec{c,} \vec{a} \neq 0,\] then
The vector \[\vec{b} = 3 \hat { i }+ 4 \hat {k }\] is to be written as the sum of a vector \[\vec{\alpha}\] parallel to \[\vec{a} = \hat {i} + \hat {j}\] and a vector \[\vec{\beta}\] perpendicular to \[\vec{a}\]. Then \[\vec{\alpha} =\]
If \[\vec{a,} \vec{b}\] represent the diagonals of a rhombus, then
If θ is the angle between the vectors \[2 \hat{ i } - 2 \hat{ j} + 4 \hat{ k } \text{ and } 3 \hat{ i } + \hat { j } + 2 \hat{ k } ,\] then sin θ =
The value of \[\left( \vec{a} \times \vec{b} \right)^2\] is
If θ is the angle between any two vectors `bara` and `barb` and `|bara · barb| = |bara xx barb|` then θ is equal to ______.
Let `veca` and `vecb` be two unit vectors and θ is the angle between them, Then `veca + vecb` is a unit vector if-
Let `veca = hati + hatj, vecb = hati - hatj` and `vecc = hati + hatj + hatk`. If `hatn` is a unit vector such that `veca.hatn` = 0 and `vecb.hatn` = 0, then find `|vecc.hatn|`.
If `veca` and `vecb` are unit vectors inclined at an angle 30° to each other, then find the area of the parallelogram with `(veca + 3vecb)` and `(3veca + vecb)` as adjacent sides.
The two adjacent sides of a parallelogram are represented by vectors `2hati - 4hatj + 5hatk` and `hati - 2hatj - 3hatk`. Find the unit vector parallel to one of its diagonals, Also, find the area of the parallelogram.
If the angle between `veca` and `vecb` is `π/3` and `|veca xx vecb| = 3sqrt(3)`, then the value of `veca.vecb` is ______.
If `|veca xx vecb| = sqrt(3)` and `veca.vecb` = – 3, then angle between `veca` and `vecb` is ______.
If `veca = hati + hatj + hatk` and `vecb = hati + 2hatj + 3hatk` then find a unit vector perpendicular to both `veca + vecb` and `veca - vecb`.
If `veca` is a unit vector perpendicular to `vecb` and `(veca + 2vecb).(3veca - vecb) = -5`, find `|vecb|`.