English

If θ is the Angle Between the Vectors 2 ^ I − 2 ^ J + 4 ^ K and 3 ^ I + ^ J + 2 ^ K , Then Sin θ = - Mathematics

Advertisements
Advertisements

Question

If θ is the angle between the vectors \[2 \hat{ i }  - 2 \hat{ j}  + 4 \hat{ k }  \text{ and } 3 \hat{ i }  + \hat { j }  + 2 \hat{ k }  ,\]  then sin θ =

 

Options

  • \[\frac{2}{3}\]

  • \[\frac{2}{\sqrt{7}}\]

  • \[\frac{\sqrt{2}}{7}\]

  • \[\sqrt{\frac{2}{7}}\] 

MCQ

Solution

\[\frac{2}{\sqrt{7}}\] 

\[\text{ Let } :\]

\[ \vec{a} =2 \hat{ i }  -2 \hat{ j }  +4 \hat{ k }  \]

\[ \vec{b} =3 \hat{ i } + \hat{ j }  +2 \hat{ k }  \]

\[\left| \vec{a} \right| = \sqrt{2^2 + \left( - 2 \right)^2 + 4^2}\]

\[ = \sqrt{4 + 4 + 16}\]

\[ = \sqrt{24}\]

\[ = 2\sqrt{6}\]

\[ \left| \vec{b} \right| = \sqrt{3^2 + 1^2 + 2^2}\]

\[ = \sqrt{9 + 1 + 4}\]

\[ = \sqrt{14}\]

\[ \vec{a} \times \vec{b} = \begin{vmatrix}\hat{ i }  & \hat{ j }  & \hat{ k }  \\ 2 & - 2 & 4 \\ 3 & 1 & 2\end{vmatrix}\]

\[ = - 8 \hat{ i } + 8 \hat{ j }  + 8 \hat{ k }  \]

\[\left| \vec{a} \times \vec{b} \right| = \sqrt{64 + 64 + 64}\]

\[ = \sqrt{192}\]

\[ = 8 \sqrt{3}\]

\[\text{ Let }  \theta \text{ be the angle between } \vec{a} \text{ and } \vec{b .} \]

\[\left| \vec{a} \times \vec{b} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \sin \theta\]

\[ \Rightarrow 8 \sqrt{3} = \left( 2\sqrt{6} \right)\left( \sqrt{14} \right) \sin \theta\]

\[ \Rightarrow \sin \theta = \frac{8 \sqrt{3}}{4\sqrt{21}}\]

\[ = \frac{2}{\sqrt{7}}\]

\[ \Rightarrow \theta = \sin^{- 1} \left( \frac{2}{\sqrt{7}} \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 25: Vector or Cross Product - MCQ [Page 35]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 25 Vector or Cross Product
MCQ | Q 11 | Page 35

RELATED QUESTIONS

Find `|veca × vecb|`, if `veca = hati - 7hatj + 7hatk` and `vecb = 3hati - 2hatj + 2hatk`.


Given that `veca.vecb = 0` and `veca xx vecb = 0` What can you conclude about the vectors `veca and vecb`?


If either `veca = vec0`  or `vecb = vec0`, then `veca xxvecb = vec0`. Is the converse true? Justify your answer with an example.


If \[\vec{a} = 2 \hat{ i } + \hat{ k }  , \vec{b} = \hat { i }  + \hat{ j } + \hat{ k }  ,\]  find the magnitude of  \[\vec{a} \times \vec{b} .\]

 

 


 Find a unit vector perpendicular to both the vectors  \[4 \hat{ i } - \hat{ j }  + 3 \hat{ k } \text{ and }  - 2 \hat{ i  } + \hat{ j }  - 2 \hat{ k }  .\]

 


Find a unit vector perpendicular to the plane containing the vectors  \[\vec{a} = 2 \hat{ i } + \hat{ j }  + \hat{ k } \text{ and }  \vec{b} = \hat{ i } + 2 \hat{ j }  + \hat{ k } .\]

 


\[\text{ If }  \vec{ a } = 3 \hat{ i }- \hat{ j }  - 2 \hat{ k } \text{  and } \vec{b} = 2 \hat{ i }  + 3 \hat{ j } + \hat{ k }  , \text{ find }  \left( \vec{a} + 2 \vec{b} \right) \times \left( 2 \vec{a} - \vec{b} \right) .\]

 


Find a vector whose length is 3 and which is perpendicular to the vector \[\vec{a} = 3 \hat{ i }  + \hat{ j  } - 4 \hat{ k }  \text{ and }  \vec{b} = 6 \hat{ i }  + 5 \hat{ j }  - 2 \hat{ k } .\]


Find the area of the parallelogram determined by the vector \[2 \hat{ i } + \hat{ j } + 3 \hat{ k }  \text{ and }  \hat{ i }  - \hat{ j } \] .

 


Find the area of the parallelogram determined by the vector \[3 \hat{ i } + \hat{ j }  - 2 \hat{ k } \text{  and }  \hat{ i }  - 3 \hat{ j }  + 4 \hat{ k } \] .

 


Find the area of the parallelogram whose diagonals are  \[3 \hat{ i }  + 4 \hat{ j }  \text{ and } \hat{ i } + \hat{ j } + \hat{ k }\]

 


Given \[\vec{a} = \frac{1}{7}\left( 2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k }  \right), \vec{b} = \frac{1}{7}\left( 3 \hat{ i } - 6 \hat{ j }  + 2 \hat{ k }  \right), \vec{c} = \frac{1}{7}\left( 6 \hat{ i } + 2 \hat{ j }  - 3 \hat{ k }\right), \hat{ i } , \hat{ j }  , \hat{ k } \] being a right handed orthogonal system of unit vectors in space, show that \[\vec{a} , \vec{b} , \vec{c}\] is also another system.

 
 

if \[\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq 0,\]  then  show that \[\vec{a} + \vec{c} = m \vec{b} ,\]  where m is any scalar.

 
 

 


What inference can you draw if \[\vec{a} \times \vec{b} = \vec{0} \text{ and }  \vec{a} \cdot \vec{b} = 0 .\]

 

Find a unit vector perpendicular to the plane ABC, where the coordinates of AB and Care A (3, −1, 2), B (1, −1, −3) and C (4, −3, 1).


If abc are the lengths of sides, BCCA and AB of a triangle ABC, prove that \[\vec{BC} + \vec{CA} + \vec{AB} = \vec{0}\]  and deduce that \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} .\]

 
 

if \[\vec{a} = \hat{ i }- 2\hat{ j }  + 3 \hat{ k }  , \text{ and }  \vec{b} = 2 \hat{ i }  + 3 \hat{ j }  - 5 \hat{ k }  ,\]  then find \[\vec{a} \times \vec{b} .\]  Verify th at \[\vec{a} \text{ and }  \vec{a} \times \vec{b}\] are perpendicular to each other.

 
 
 

 


Define  \[\vec{a} \times \vec{b}\] and prove that \[\left| \vec{a} \times \vec{b} \right| = \left( \vec{a} . \vec{b} \right)\] tan θ, where θ is the angle between \[\vec{a} \text{ and }  \vec{b}\] .

 
 

 


Using vectors, find the area of the triangle with vertice A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1)  .    


If  \[\left| \vec{a} \times \vec{b} \right|^2 + \left| \vec{a} \cdot \vec{b} \right|^2 = 400\] and  \[\left| \vec{a} \right| = 5,\]  then write the value of \[\left| \vec{b} \right| .\]

 

Write the expression for the area of the parallelogram having \[\vec{a} \text{ and } \vec{b}\] as its diagonals.

 
 

For any two vectors  \[\vec{a} \text{ and }  \vec{b}\] write the value of \[\left( \vec{a} . \vec{b} \right)^2 + \left| \vec{a} \times \vec{b} \right|^2\] in terms of their magnitudes.

 
 

If \[\vec{a} \text{ and }  \vec{b}\] are two vectors of magnitudes 3 and \[\frac{\sqrt{2}}{3}\]  espectively such that \[\vec{a} \times \vec{b}\] is a unit vector. Write the angle between \[\vec{a} \text{ and }  \vec{b} .\]

 
 
 

 


For any three vectors \[\vec{a,} \vec{b} \text{ and }  \vec{c}\] write the value of \[\vec{a} \times \left( \vec{b} + \vec{c} \right) + \vec{b} \times \left( \vec{c} + \vec{a} \right) + \vec{c} \times \left( \vec{a} + \vec{b} \right) .\]

 
 

If \[\vec{a} = 3 \hat{ i }  - \hat{ j }  + 2 \hat{ k } \] and  \[\vec{b} = 2 \hat { i }  + \hat{ j }  - \hat{ k} ,\]  then find \[\left( \vec{a} \times \vec{b} \right) \vec{a} .\]

 


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then write the value of \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 .\]

 

 


Find λ, if \[\left( 2 \hat{ i }  + 6 \hat{ j }  + 14 \hat{ k }  \right) \times \left( \hat{ i }  - \lambda \hat{ j } + 7 \hat{ k }  \right) = \vec{0} .\]

 

Write the value of \[\left( \hat{ i }  \times \hat{ j }  \right) \cdot \hat{ k }  + \left( \hat{ j } + \hat{ k }  \right) \cdot \hat{ j } \]

 

Find a vector of magnitude \[\sqrt{171}\]  which is perpendicular to both of the vectors \[\vec{a} = \hat{ i } + 2 \hat{ j }  - 3 \hat{ k } \]  and  \[\vec{a} = \hat{ i } + 2 \hat{ j }  - 3 \hat{ k } \] . 

 
 

Write the angle between the vectors  \[\vec{a} \times \vec{b}\]  and  \[\vec{b} \times \vec{a}\] .

 

 


Vectors \[\vec{a} \text{ and }  \vec{b}\] are inclined at angle θ = 120°. If \[\left| \vec{a} \right| = 1, \left| \vec{b} \right| = 2,\] then  \[\left[ \left( \vec{a} + 3 \vec{b} \right) \times \left( 3 \vec{a} - \vec{b} \right) \right]^2\]  is equal to 

 
  

A unit vector perpendicular to both \[\hat{ i }  + \hat{ j } \text{ and }  \hat{ j } + \hat{ k } \] is

 

If \[\hat{ i }  , \hat{ j }  , \hat{ k } \] are unit vectors, then


Let `veca = hati + hatj, vecb = hati - hatj` and `vecc = hati + hatj + hatk`. If `hatn` is a unit vector such that `veca.hatn` = 0 and `vecb.hatn` = 0, then find `|vecc.hatn|`.


Find the area of the parallelogram whose diagonals are `hati - 3hatj + hatk` and `hati + hatj + hatk`.


If `veca` is a unit vector perpendicular to `vecb` and `(veca + 2vecb).(3veca - vecb) = -5`, find `|vecb|`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×