Advertisements
Advertisements
Question
Given \[\vec{a} = \frac{1}{7}\left( 2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k } \right), \vec{b} = \frac{1}{7}\left( 3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } \right), \vec{c} = \frac{1}{7}\left( 6 \hat{ i } + 2 \hat{ j } - 3 \hat{ k }\right), \hat{ i } , \hat{ j } , \hat{ k } \] being a right handed orthogonal system of unit vectors in space, show that \[\vec{a} , \vec{b} , \vec{c}\] is also another system.
Solution
\[\text{ Given } : \]
\[ \vec{a} = \frac{1}{7} \left( 2 \hat{ i } + 3 \hat{ j }+ 6 \hat{ k } \right)\]
\[ \vec{b} = \frac{1}{7} \left( 3 \hat{ i } - 6 \hat{ j } + 2 \hat { k } \right)\]
\[ \vec{c} = \frac{1}{7}\left( 6 \hat{ i } + 2 \hat{ j } - 3 \hat{ k} \right)\]
\[ \vec{a} \times \vec{b} = \left( \frac{1}{7} \right) \left( \frac{1}{7} \right)\begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ 2 & 3 & 6 \\ 3 & - 6 & 2\end{vmatrix}\]
\[ = \frac{1}{49}\left( 42 \hat{ i } + 14 \hat{ j } - 21 \hat{ k } \right)\]
\[ = \frac{1}{49}\left[ 7 \left( 6 \hat{ i } + 2 \hat{ j } - 3 \hat{ k } \right) \right]\]
\[ = \frac{1}{7}\left( 6 \hat{ i } + 2 \hat{ j } - 3 \hat{ k } \right)\]
\[ = \vec{c} \]
\[ \vec{b} \times \vec{c} = \left( \frac{1}{7} \right) \left( \frac{1}{7} \right)\begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ 3 & - 6 & 2 \\ 6 & 2 & - 3\end{vmatrix}\]
\[ = \frac{1}{49}\left( 14 \hat{ i } + 21 \hat{ j } + 42 \hat{ k } \right)\]
\[ = \frac{1}{49}\left[ 7 \left( 2 \hat{ i } + 3 \hat{ j} + 6 \hat{ k } \right) \right]\]
\[ = \frac{1}{7} \left( 2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k } \right)\]
\[ = \vec{a} \]
\[ \vec{c} \times \vec{a} = \left( \frac{1}{7} \right) \left( \frac{1}{7} \right)\begin{vmatrix}\hat{ i } & \hat{ j } & k \\ 6 & 2 & - 3 \\ 2 & 3 & 6\end{vmatrix}\]
\[ = \frac{1}{49}\left( 21 \hat{ i } - 42 \hat{ j } + 14 \hat{ k } \right)\]
\[ = \frac{1}{49}\left[ 7 \left( 3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } \right) \right]\]
\[ = \frac{1}{7} \left( 3 \hat{ i } - 6 \hat{ j } + 2 \hat { k } \right)\]
\[ = \vec{b} \]
\[\left| \vec{a} \right| = \frac{1}{7}\sqrt{4 + 9 + 36}\]
\[ = \frac{7}{7}\]
\[ = 1\]
\[\left| \vec{b} \right| = \frac{1}{7}\sqrt{9 + 36 + 4}\]
\[ = \frac{7}{7}\]
\[ = 1\]
\[\left| \vec{c} \right| = \frac{1}{7}\sqrt{36 + 4 + 9}\]
\[ = \frac{7}{7}\]
\[ = 1\]
\[\text{ Thus } , \vec{a} , \vec{b} \text{ and } \vec{c} \text{ form a right handed orthogonal system of unit vectors. } \]
APPEARS IN
RELATED QUESTIONS
If `veca = 2hati + 2hatj + 3hatk, vecb = -veci + 2hatj + hatk and vecc = 3hati + hatj` are such that `veca + lambdavecb` is perpendicular to `vecc`, then find the value of λ.
Find `|veca × vecb|`, if `veca = hati - 7hatj + 7hatk` and `vecb = 3hati - 2hatj + 2hatk`.
If a unit vector `veca` makes an angles `pi/3` with `hati, pi/4` with `hatj` and an acute angle θ with `hatk`, then find θ and, hence the compounds of `veca`.
Show that `(veca - vecb) xx (veca + vecb) = 2(veca xx vecb)`.
Let `veca = 4hati + 5hatj - hatk`, `vecb = hati - 4hatj + 5hatk` and `vecc = 3hati + hatj - hatk`. Find a vector `vecd` which is perpendicular to both `vecc` and `vecb and vecd.veca = 21`
Find a vector of magnitude 49, which is perpendicular to both the vectors \[2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k } \text{ and } 3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } .\]
Find the area of the parallelogram whose diagonals are \[2 \hat{ i }+ \hat{ k } \text{ and } \hat{ i } + \hat{ j } + \hat{ k } \]
if \[\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq 0,\] then show that \[\vec{a} + \vec{c} = m \vec{b} ,\] where m is any scalar.
What inference can you draw if \[\vec{a} \times \vec{b} = \vec{0} \text{ and } \vec{a} \cdot \vec{b} = 0 .\]
If \[\vec{a,} \vec{b,} \vec{c}\] are three unit vectors such that \[\vec{a} \times \vec{b} = \vec{c} , \vec{b} \times \vec{c} = \vec{a,} \vec{c} \times \vec{a} = \vec{b} .\] Show that \[\vec{a,} \vec{b,} \vec{c}\] form an orthonormal right handed triad of unit vectors.
If a, b, c are the lengths of sides, BC, CA and AB of a triangle ABC, prove that \[\vec{BC} + \vec{CA} + \vec{AB} = \vec{0}\] and deduce that \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} .\]
if \[\vec{a} = \hat{ i }- 2\hat{ j } + 3 \hat{ k } , \text{ and } \vec{b} = 2 \hat{ i } + 3 \hat{ j } - 5 \hat{ k } ,\] then find \[\vec{a} \times \vec{b} .\] Verify th at \[\vec{a} \text{ and } \vec{a} \times \vec{b}\] are perpendicular to each other.
The two adjacent sides of a parallelogram are \[2 \hat{ i } - 4 \hat{ j } + 5 \hat{ k } \text{ and } \hat{ i } - 2 \hat{ j } - 3\hat{ k } .\]\ Find the unit vector parallel to one of its diagonals. Also, find its area.
If \[\vec{a} = a_1 \hat{ i } + a_2 \hat{ j } + a_3 \hat{ k } , \vec{b} = b_1 \hat{ i } + b_2 \hat{ j } + b_3 \hat{ k } \text{ and } \vec{c} = c_1 \hat{ i } + c_2 \hat{ j } + c_3 \hat{ k } ,\]then verify that \[\vec{a} \times \left( \vec{b} + \vec{c} \right) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} .\]
Using vectors, find the area of the triangle with vertice A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5) .
Write the value of \[\hat{ i } . \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } . \left( \hat{ k } \times \hat{ i } \right) + \hat{ k } . \left( \hat{ i } \times \hat{ j } \right) .\]
Write the expression for the area of the parallelogram having \[\vec{a} \text{ and } \vec{b}\] as its diagonals.
For any two vectors \[\vec{a} \text{ and } \vec{b}\] write the value of \[\left( \vec{a} . \vec{b} \right)^2 + \left| \vec{a} \times \vec{b} \right|^2\] in terms of their magnitudes.
If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} \times \vec{b} \right| = \sqrt{3}\text{ and } \vec{a} . \vec{b} = 1,\] find the angle between.
If \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 = 144\] and \[\left| \vec{a} \right| = 4,\] find \[\left| \vec{b} \right|\] .
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then write the value of \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 .\]
If \[\vec{c}\] is a unit vector perpendicular to the vectors \[\vec{a} \text{ and } \vec{b} ,\] write another unit vector perpendicular to \[\vec{a} \text{ and } \vec{b} .\]
Write the value of the area of the parallelogram determined by the vectors \[2 \hat{ i } \text{ and } 3 \hat{ j } .\]
Write the number of vectors of unit length perpendicular to both the vectors \[\vec{a} = 2 \hat{ i } + \hat{ j } + 2 \hat{ k } \text{ and } \vec{b} = \hat{ j } + \hat{ k } \] .
If \[\vec{a} = \hat{ i } + \hat{ j } - \hat{ k } , \vec{b} = - \hat{ i } + 2\hat{ j } + 2 \hat{ k } \text{ and } \vec{c} = - \hat{ i } + 2 \hat{ j } - \hat{ k } ,\] then a unit vector normal to the vectors \[\vec{a} + \vec{b} \text{ and } \vec{b} - \vec{c}\] is
If \[\vec{a} = 2 \hat{ i } - 3 \hat{ j } - \hat{ k } \text{ and } \vec{b} = \hat{ i } + 4 \hat{ j } - 2 \hat{ k
} , \text{ then } \vec{a} \times \vec{b}\] is
If θ is the angle between the vectors \[2 \hat{ i } - 2 \hat{ j} + 4 \hat{ k } \text{ and } 3 \hat{ i } + \hat { j } + 2 \hat{ k } ,\] then sin θ =
The value of \[\hat{ i } \cdot \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } \cdot \left( \hat{ i } \times \hat{ k } \right) + \hat{ k } \cdot \left( \hat{ i } \times \hat{ j } \right),\] is
If θ is the angle between any two vectors `bara` and `barb` and `|bara · barb| = |bara xx barb|` then θ is equal to ______.
Let `veca` and `vecb` be two unit vectors and θ is the angle between them, Then `veca + vecb` is a unit vector if-
Let `veca, vecb, vecc` be three vectors mutually perpendicular to each other and have same magnitude. If a vector `vecr` satisfies. `veca xx {(vecr - vecb) xx veca} + vecb xx {(vecr - vecc) xx vecb} + vecc xx {(vecr - veca) xx vecc} = vec0`, then `vecr` is equal to ______.
If `veca` and `vecb` are two non-zero vectors such that `|veca xx vecb| = veca.vecb`, find the angle between `veca` and `vecb`.