Advertisements
Advertisements
प्रश्न
Given \[\vec{a} = \frac{1}{7}\left( 2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k } \right), \vec{b} = \frac{1}{7}\left( 3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } \right), \vec{c} = \frac{1}{7}\left( 6 \hat{ i } + 2 \hat{ j } - 3 \hat{ k }\right), \hat{ i } , \hat{ j } , \hat{ k } \] being a right handed orthogonal system of unit vectors in space, show that \[\vec{a} , \vec{b} , \vec{c}\] is also another system.
उत्तर
\[\text{ Given } : \]
\[ \vec{a} = \frac{1}{7} \left( 2 \hat{ i } + 3 \hat{ j }+ 6 \hat{ k } \right)\]
\[ \vec{b} = \frac{1}{7} \left( 3 \hat{ i } - 6 \hat{ j } + 2 \hat { k } \right)\]
\[ \vec{c} = \frac{1}{7}\left( 6 \hat{ i } + 2 \hat{ j } - 3 \hat{ k} \right)\]
\[ \vec{a} \times \vec{b} = \left( \frac{1}{7} \right) \left( \frac{1}{7} \right)\begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ 2 & 3 & 6 \\ 3 & - 6 & 2\end{vmatrix}\]
\[ = \frac{1}{49}\left( 42 \hat{ i } + 14 \hat{ j } - 21 \hat{ k } \right)\]
\[ = \frac{1}{49}\left[ 7 \left( 6 \hat{ i } + 2 \hat{ j } - 3 \hat{ k } \right) \right]\]
\[ = \frac{1}{7}\left( 6 \hat{ i } + 2 \hat{ j } - 3 \hat{ k } \right)\]
\[ = \vec{c} \]
\[ \vec{b} \times \vec{c} = \left( \frac{1}{7} \right) \left( \frac{1}{7} \right)\begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ 3 & - 6 & 2 \\ 6 & 2 & - 3\end{vmatrix}\]
\[ = \frac{1}{49}\left( 14 \hat{ i } + 21 \hat{ j } + 42 \hat{ k } \right)\]
\[ = \frac{1}{49}\left[ 7 \left( 2 \hat{ i } + 3 \hat{ j} + 6 \hat{ k } \right) \right]\]
\[ = \frac{1}{7} \left( 2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k } \right)\]
\[ = \vec{a} \]
\[ \vec{c} \times \vec{a} = \left( \frac{1}{7} \right) \left( \frac{1}{7} \right)\begin{vmatrix}\hat{ i } & \hat{ j } & k \\ 6 & 2 & - 3 \\ 2 & 3 & 6\end{vmatrix}\]
\[ = \frac{1}{49}\left( 21 \hat{ i } - 42 \hat{ j } + 14 \hat{ k } \right)\]
\[ = \frac{1}{49}\left[ 7 \left( 3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } \right) \right]\]
\[ = \frac{1}{7} \left( 3 \hat{ i } - 6 \hat{ j } + 2 \hat { k } \right)\]
\[ = \vec{b} \]
\[\left| \vec{a} \right| = \frac{1}{7}\sqrt{4 + 9 + 36}\]
\[ = \frac{7}{7}\]
\[ = 1\]
\[\left| \vec{b} \right| = \frac{1}{7}\sqrt{9 + 36 + 4}\]
\[ = \frac{7}{7}\]
\[ = 1\]
\[\left| \vec{c} \right| = \frac{1}{7}\sqrt{36 + 4 + 9}\]
\[ = \frac{7}{7}\]
\[ = 1\]
\[\text{ Thus } , \vec{a} , \vec{b} \text{ and } \vec{c} \text{ form a right handed orthogonal system of unit vectors. } \]
APPEARS IN
संबंधित प्रश्न
If `veca = 2hati + 2hatj + 3hatk, vecb = -veci + 2hatj + hatk and vecc = 3hati + hatj` are such that `veca + lambdavecb` is perpendicular to `vecc`, then find the value of λ.
If θ is the angle between two vectors `hati - 2hatj + 3hatk and 3hati - 2hatj + hatk` find `sin theta`
\[\text{ If } \vec{a} = \hat { i } + 3 \hat { j } - 2 \hat { k } \text{ and } \vec{b} = - \hat { i } + 3 \hat { k } , \text{ find } \left| \vec{a} \times \vec{b} \right| .\]
If \[\vec{a} = 3 \hat { i } + 4 \hat { j } \text{ and } \vec{b} = \hat { i } + \hat{ j } + \hat{ k } ,\] find the value of \[\left| \vec{a} \times \vec{b} \right| .\]
Find a unit vector perpendicular to the plane containing the vectors \[\vec{a} = 2 \hat{ i } + \hat{ j } + \hat{ k } \text{ and } \vec{b} = \hat{ i } + 2 \hat{ j } + \hat{ k } .\]
Find a vector of magnitude 49, which is perpendicular to both the vectors \[2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k } \text{ and } 3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } .\]
Find the area of the parallelogram determined by the vector \[2 \hat{ i } \text{ and } 3 \hat{ j } \] .
Find the area of the parallelogram determined by the vector \[\hat{ i } - 3 \hat{ j } + \hat{ k } \text{ and } \hat{ i } + \hat{ j } + \hat{ k } .\]
Find the area of the parallelogram whose diagonals are \[4 \hat{ i } - \hat{ j } - 3 \hat{ k } \text{ and } - 2 \hat{ j } + \hat{ j } - 2 \hat{ k } \]
Find the area of the parallelogram whose diagonals are \[2 \hat{ i }+ \hat{ k } \text{ and } \hat{ i } + \hat{ j } + \hat{ k } \]
Find the area of the parallelogram whose diagonals are \[2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k } \text{ and } 3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } \]
if \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 7 \text{ and } \vec{a} \times \vec{b} = 3 \hat{ i } + 2 \hat{ j } + 6 \hat{ k } ,\] find the angle between \[\vec{a} \text{ and } \vec{b} .\]
Find the area of the triangle formed by O, A, B when \[\vec{OA} = \hat{ i } + 2 \hat{ j } + 3 \hat{ k } , \vec{OB} = - 3 \hat{ i } - 2 \hat{ j }+ \hat{ k } .\]
Find a unit vector perpendicular to each of the vectors \[\vec{a} + \vec{b} \text{ and } \vec{a} - \vec{b} , \text{ where } \vec{a} = 3 \hat{ i } + 2 \hat{ j } + 2 \hat{ k } \text{ and } \vec{b} = \hat{ i } + 2 \hat{ j } - 2 \hat{ k } .\]
The two adjacent sides of a parallelogram are \[2 \hat{ i } - 4 \hat{ j } + 5 \hat{ k } \text{ and } \hat{ i } - 2 \hat{ j } - 3\hat{ k } .\]\ Find the unit vector parallel to one of its diagonals. Also, find its area.
If \[\vec{a} = a_1 \hat{ i } + a_2 \hat{ j } + a_3 \hat{ k } , \vec{b} = b_1 \hat{ i } + b_2 \hat{ j } + b_3 \hat{ k } \text{ and } \vec{c} = c_1 \hat{ i } + c_2 \hat{ j } + c_3 \hat{ k } ,\]then verify that \[\vec{a} \times \left( \vec{b} + \vec{c} \right) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} .\]
Write the value of \[\hat{ i } . \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } . \left( \hat{ k } \times \hat{ i } \right) + \hat{ k } . \left( \hat{ i } \times \hat{ j } \right) .\]
Write the value of \[\hat{ i } × \left( \hat{ j } + \hat{ k } \right) + \hat{ j } × \left( \hat{ k } + \hat{ i } \right) + \hat{ k } × \left( \hat{ i } + \hat{ j } \right) .\]
If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} \times \vec{b} \right| = \sqrt{3}\text{ and } \vec{a} . \vec{b} = 1,\] find the angle between.
For any two vectors \[\vec{a} \text{ and } \vec{b} , \text{ find } \left( \vec{a} \times \vec{b} \right) . \vec{b} .\]
If \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 = 144\] and \[\left| \vec{a} \right| = 4,\] find \[\left| \vec{b} \right|\] .
Find the angle between two vectors \[\vec{a} \text{ and } \vec{b}\] with magnitudes 1 and 2 respectively and when \[\left| \vec{a} \times \vec{b} \right| = \sqrt{3} .\]
Find λ, if \[\left( 2 \hat{ i } + 6 \hat{ j } + 14 \hat{ k } \right) \times \left( \hat{ i } - \lambda \hat{ j } + 7 \hat{ k } \right) = \vec{0} .\]
The vector \[\vec{b} = 3 \hat { i }+ 4 \hat {k }\] is to be written as the sum of a vector \[\vec{\alpha}\] parallel to \[\vec{a} = \hat {i} + \hat {j}\] and a vector \[\vec{\beta}\] perpendicular to \[\vec{a}\]. Then \[\vec{\alpha} =\]
The value of \[\hat{ i } \cdot \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } \cdot \left( \hat{ i } \times \hat{ k } \right) + \hat{ k } \cdot \left( \hat{ i } \times \hat{ j } \right),\] is
The value of λ for which the two vectors `2hati - hatj + 2hatk` and `3hati + λhatj + hatk` are perpendicular is ______.
Let `veca` and `vecb` be two unit vectors and θ is the angle between them, Then `veca + vecb` is a unit vector if-
Let `veca = 2hati + hatj - 2hatk, vecb = hati + hatj`. If `vecc` is a vector such that `veca . vecc = \|vecc|, |vecc - veca| = 2sqrt(2)` and the angle between `veca xx vecb` and `vecc` is 30°, then `|(veca xx vecb) xx vecc|` equals ______.
If `|veca xx vecb| = sqrt(3)` and `veca.vecb` = – 3, then angle between `veca` and `vecb` is ______.
Find the area of a parallelogram whose adjacent sides are determined by the vectors `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.
If `veca = hati + hatj + hatk` and `vecb = hati + 2hatj + 3hatk` then find a unit vector perpendicular to both `veca + vecb` and `veca - vecb`.
If `veca xx vecb = veca xx vecc` where `veca, vecb` and `vecc` are non-zero vectors, then prove that either `vecb = vecc` or `veca` and `(vecb - vecc)` are parallel.