हिंदी

Given → a = 1 7 ( 2 ^ I + 3 ^ J + 6 ^ K ) , → B = 1 7( 3 ^ I − 6 ^ J + 2 ^ K ) , → C = 1 7 ( 6 ^ I + 2 ^ J − 3 ^ K ) , ^ I , ^ J , ^ K Being a Right Handed Orthogonal System of Unit Vectors in Space - Mathematics

Advertisements
Advertisements

प्रश्न

Given \[\vec{a} = \frac{1}{7}\left( 2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k }  \right), \vec{b} = \frac{1}{7}\left( 3 \hat{ i } - 6 \hat{ j }  + 2 \hat{ k }  \right), \vec{c} = \frac{1}{7}\left( 6 \hat{ i } + 2 \hat{ j }  - 3 \hat{ k }\right), \hat{ i } , \hat{ j }  , \hat{ k } \] being a right handed orthogonal system of unit vectors in space, show that \[\vec{a} , \vec{b} , \vec{c}\] is also another system.

 
 
योग

उत्तर

\[\text{ Given } : \]
\[ \vec{a} = \frac{1}{7} \left( 2 \hat{ i }  + 3 \hat{ j }+ 6 \hat{ k }  \right)\]
\[ \vec{b} = \frac{1}{7} \left( 3 \hat{ i }  - 6 \hat{ j }  + 2 \hat { k  } \right)\]
\[ \vec{c} = \frac{1}{7}\left( 6 \hat{ i } + 2 \hat{ j }  - 3 \hat{ k}  \right)\]
\[ \vec{a} \times \vec{b} = \left( \frac{1}{7} \right) \left( \frac{1}{7} \right)\begin{vmatrix}\hat{ i }  & \hat{ j } & \hat{ k }  \\ 2 & 3 & 6 \\ 3 & - 6 & 2\end{vmatrix}\]
\[ = \frac{1}{49}\left( 42 \hat{ i }  + 14 \hat{ j }  - 21 \hat{ k } \right)\]
\[ = \frac{1}{49}\left[ 7 \left( 6 \hat{ i } + 2 \hat{ j } - 3 \hat{ k }  \right) \right]\]
\[ = \frac{1}{7}\left( 6 \hat{ i }  + 2 \hat{ j } - 3 \hat{ k } \right)\]
\[ = \vec{c} \]
\[ \vec{b} \times \vec{c} = \left( \frac{1}{7} \right) \left( \frac{1}{7} \right)\begin{vmatrix}\hat{ i } & \hat{ j }  & \hat{ k } \\ 3 & - 6 & 2 \\ 6 & 2 & - 3\end{vmatrix}\]
\[ = \frac{1}{49}\left( 14 \hat{ i }  + 21 \hat{ j }  + 42 \hat{ k } \right)\]
\[ = \frac{1}{49}\left[ 7 \left( 2 \hat{ i }  + 3 \hat{ j} + 6 \hat{ k }  \right) \right]\]
\[ = \frac{1}{7} \left( 2 \hat{ i }  + 3 \hat{ j }  + 6 \hat{ k  } \right)\]
\[ = \vec{a} \]
\[ \vec{c} \times \vec{a} = \left( \frac{1}{7} \right) \left( \frac{1}{7} \right)\begin{vmatrix}\hat{ i } & \hat{ j }  & k \\ 6 & 2 & - 3 \\ 2 & 3 & 6\end{vmatrix}\]
\[ = \frac{1}{49}\left( 21 \hat{ i } - 42 \hat{ j }  + 14 \hat{ k }  \right)\]
\[ = \frac{1}{49}\left[ 7 \left( 3 \hat{ i }  - 6 \hat{ j }  + 2 \hat{ k }  \right) \right]\]
\[ = \frac{1}{7} \left( 3 \hat{ i }  - 6 \hat{ j }  + 2 \hat { k } \right)\]
\[ = \vec{b} \]
\[\left| \vec{a} \right| = \frac{1}{7}\sqrt{4 + 9 + 36}\]
\[ = \frac{7}{7}\]
\[ = 1\]
\[\left| \vec{b} \right| = \frac{1}{7}\sqrt{9 + 36 + 4}\]
\[ = \frac{7}{7}\]
\[ = 1\]
\[\left| \vec{c} \right| = \frac{1}{7}\sqrt{36 + 4 + 9}\]
\[ = \frac{7}{7}\]
\[ = 1\]
\[\text{ Thus } , \vec{a} , \vec{b} \text{ and }  \vec{c} \text{ form a right handed orthogonal system of unit vectors. } \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 25: Vector or Cross Product - Exercise 25.1 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 25 Vector or Cross Product
Exercise 25.1 | Q 12 | पृष्ठ ३०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `veca = 2hati + 2hatj + 3hatk,  vecb = -veci + 2hatj + hatk and vecc = 3hati + hatj` are such that `veca + lambdavecb`  is perpendicular to `vecc`, then find the value of λ.


If θ is the angle between two vectors `hati - 2hatj + 3hatk and 3hati - 2hatj + hatk` find `sin theta`


\[\text{ If } \vec{a} = \hat { i }  + 3 \hat { j }  - 2 \hat { k } \text{ and }  \vec{b} = - \hat { i }  + 3 \hat { k }   , \text{ find }  \left| \vec{a} \times \vec{b} \right| .\]


If \[\vec{a} = 3 \hat { i } + 4 \hat { j } \text{ and }  \vec{b} = \hat { i  } + \hat{ j }  + \hat{ k } ,\]  find the value of \[\left| \vec{a} \times \vec{b} \right| .\]

 

Find a unit vector perpendicular to the plane containing the vectors  \[\vec{a} = 2 \hat{ i } + \hat{ j }  + \hat{ k } \text{ and }  \vec{b} = \hat{ i } + 2 \hat{ j }  + \hat{ k } .\]

 


\[\text{ If }  \vec{ a } = 3 \hat{ i }- \hat{ j }  - 2 \hat{ k } \text{  and } \vec{b} = 2 \hat{ i }  + 3 \hat{ j } + \hat{ k }  , \text{ find }  \left( \vec{a} + 2 \vec{b} \right) \times \left( 2 \vec{a} - \vec{b} \right) .\]

 


Find a vector of magnitude 49, which is perpendicular to both the vectors  \[2 \hat{ i }   + 3 \hat{ j }  + 6 \hat{ k }  \text{ and } 3 \hat{ i }  - 6 \hat{ j }  + 2 \hat{ k }  .\]

 


Find the area of the parallelogram determined by the vector \[2 \hat{ i }  \text{ and }  3 \hat{ j } \] .

 


Find the area of the parallelogram determined by the vector \[\hat{ i }  - 3 \hat{ j } + \hat{ k }  \text{ and }  \hat{ i }  + \hat{ j } + \hat{ k }  .\]

 


Find the area of the parallelogram whose diagonals are  \[4 \hat{ i } - \hat{ j }  - 3 \hat{ k }  \text{ and }  - 2 \hat{ j }  + \hat{ j }  - 2 \hat{ k } \]

 


Find the area of the parallelogram whose diagonals are  \[2 \hat{ i }+ \hat{ k } \text{ and } \hat{ i } + \hat{ j } + \hat{ k } \]

 


Find the area of the parallelogram whose diagonals are \[2 \hat{ i }  + 3 \hat{ j } + 6 \hat{ k } \text{ and }  3 \hat{ i }  - 6 \hat{ j }  + 2 \hat{ k } \]

 


\[\text{ If }  \left| \vec{a} \right| = 2, \left| \vec{b} \right| = 5 \text{ and }  \left| \vec{a} \times \vec{b} \right| = 8, \text { find }  \vec{a} \cdot \vec{b} .\]

 


if \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 7 \text{ and }  \vec{a} \times \vec{b} = 3 \hat{ i }  + 2 \hat{ j } + 6 \hat{ k } ,\]  find the angle between  \[\vec{a} \text{ and }  \vec{b} .\]

 


\[\text{ If }  \left| \vec{a} \right| = \sqrt{26}, \left| \vec{b} \right| = 7 \text{ and }  \left| \vec{a} \times \vec{b} \right| = 35, \text{ find }  \vec{a} . \vec{b} .\]

 


Find the area of the triangle formed by OAB when \[\vec{OA} = \hat{ i } + 2 \hat{ j }  + 3 \hat{ k }  , \vec{OB} = - 3 \hat{ i }  - 2 \hat{ j }+ \hat{ k }  .\]


Find a unit vector perpendicular to each of the vectors \[\vec{a} + \vec{b} \text{ and }  \vec{a} - \vec{b} , \text{ where }  \vec{a} = 3 \hat{ i }  + 2 \hat{ j }  + 2 \hat{ k }  \text{ and }  \vec{b} = \hat{ i } + 2 \hat{ j }  - 2 \hat{ k }  .\]

 

The two adjacent sides of a parallelogram are \[2 \hat{ i  } - 4 \hat{ j }  + 5 \hat{ k }  \text{ and }  \hat{ i } - 2 \hat{ j }  - 3\hat{ k }  .\]\  Find the unit vector parallel to one of its diagonals. Also, find its area. 

 
 

If \[\vec{a} = a_1 \hat{ i } + a_2 \hat{ j } + a_3 \hat{ k }  , \vec{b} = b_1 \hat{ i }  + b_2 \hat{ j }  + b_3 \hat{ k }  \text{ and }  \vec{c} = c_1 \hat{ i } + c_2 \hat{ j }  + c_3 \hat{ k }  ,\]then verify that \[\vec{a} \times \left(  \vec{b} + \vec{c} \right) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} .\]


Write the value of  \[\hat{ i } . \left( \hat{ j } \times \hat{ k }  \right) + \hat{ j }  . \left( \hat{ k } \times \hat{ i }  \right) + \hat{ k }  . \left( \hat{ i }  \times \hat{ j }  \right) .\]

 


Write the value of \[\hat{ i }  × \left( \hat{ j } + \hat{ k }  \right) + \hat{ j }   ×  \left( \hat{ k } + \hat{ i }  \right) + \hat{ k }  ×   \left( \hat{ i }  + \hat{ j }  \right) .\]

 

If   \[\vec{a} \text{ and }  \vec{b}\] are two vectors such that \[\left| \vec{a} \times \vec{b} \right| = \sqrt{3}\text{ and }  \vec{a} . \vec{b} = 1,\]  find the angle between.

 
 

 


For any two vectors \[\vec{a} \text{ and } \vec{b} , \text{ find } \left( \vec{a} \times \vec{b} \right) . \vec{b} .\]

 

If \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 = 144\]  and \[\left| \vec{a} \right| = 4,\]  find \[\left| \vec{b} \right|\] . 

 
 

 


Find the angle between two vectors \[\vec{a} \text{ and }  \vec{b}\] with magnitudes 1 and 2 respectively and when \[\left| \vec{a} \times \vec{b} \right| = \sqrt{3} .\]

 
 

Find λ, if \[\left( 2 \hat{ i }  + 6 \hat{ j }  + 14 \hat{ k }  \right) \times \left( \hat{ i }  - \lambda \hat{ j } + 7 \hat{ k }  \right) = \vec{0} .\]

 

The vector \[\vec{b} = 3 \hat { i }+ 4 \hat {k }\] is to be written as the sum of a vector \[\vec{\alpha}\] parallel to \[\vec{a} = \hat {i} + \hat {j}\] and a vector \[\vec{\beta}\] perpendicular to \[\vec{a}\]. Then \[\vec{\alpha} =\]


The value of  \[\hat{ i }  \cdot \left( \hat{ j }  \times \hat{ k }  \right) + \hat{ j }  \cdot \left( \hat{ i }  \times \hat{ k }  \right) + \hat{ k }  \cdot \left( \hat{ i }  \times \hat{ j }  \right),\]  is 


The value of λ for which the two vectors `2hati - hatj + 2hatk` and `3hati + λhatj + hatk` are perpendicular is ______.


Let `veca` and `vecb` be two unit vectors and θ is the angle between them, Then `veca + vecb` is a unit vector if-


Let `veca = 2hati + hatj - 2hatk, vecb = hati + hatj`. If `vecc` is a vector such that `veca . vecc = \|vecc|, |vecc - veca| = 2sqrt(2)` and the angle between `veca xx vecb` and `vecc` is 30°, then `|(veca xx vecb) xx vecc|` equals ______.


If `|veca xx vecb| = sqrt(3)` and `veca.vecb` = – 3, then angle between `veca` and `vecb` is ______.


Find the area of a parallelogram whose adjacent sides are determined by the vectors `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.


If `veca = hati + hatj + hatk` and `vecb = hati + 2hatj + 3hatk` then find a unit vector perpendicular to both `veca + vecb` and `veca - vecb`.


If `veca xx vecb = veca xx vecc` where `veca, vecb` and `vecc` are non-zero vectors, then prove that either `vecb = vecc` or `veca` and `(vecb - vecc)` are parallel.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×