मराठी

Given → a = 1 7 ( 2 ^ I + 3 ^ J + 6 ^ K ) , → B = 1 7( 3 ^ I − 6 ^ J + 2 ^ K ) , → C = 1 7 ( 6 ^ I + 2 ^ J − 3 ^ K ) , ^ I , ^ J , ^ K Being a Right Handed Orthogonal System of Unit Vectors in Space - Mathematics

Advertisements
Advertisements

प्रश्न

Given \[\vec{a} = \frac{1}{7}\left( 2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k }  \right), \vec{b} = \frac{1}{7}\left( 3 \hat{ i } - 6 \hat{ j }  + 2 \hat{ k }  \right), \vec{c} = \frac{1}{7}\left( 6 \hat{ i } + 2 \hat{ j }  - 3 \hat{ k }\right), \hat{ i } , \hat{ j }  , \hat{ k } \] being a right handed orthogonal system of unit vectors in space, show that \[\vec{a} , \vec{b} , \vec{c}\] is also another system.

 
 
बेरीज

उत्तर

\[\text{ Given } : \]
\[ \vec{a} = \frac{1}{7} \left( 2 \hat{ i }  + 3 \hat{ j }+ 6 \hat{ k }  \right)\]
\[ \vec{b} = \frac{1}{7} \left( 3 \hat{ i }  - 6 \hat{ j }  + 2 \hat { k  } \right)\]
\[ \vec{c} = \frac{1}{7}\left( 6 \hat{ i } + 2 \hat{ j }  - 3 \hat{ k}  \right)\]
\[ \vec{a} \times \vec{b} = \left( \frac{1}{7} \right) \left( \frac{1}{7} \right)\begin{vmatrix}\hat{ i }  & \hat{ j } & \hat{ k }  \\ 2 & 3 & 6 \\ 3 & - 6 & 2\end{vmatrix}\]
\[ = \frac{1}{49}\left( 42 \hat{ i }  + 14 \hat{ j }  - 21 \hat{ k } \right)\]
\[ = \frac{1}{49}\left[ 7 \left( 6 \hat{ i } + 2 \hat{ j } - 3 \hat{ k }  \right) \right]\]
\[ = \frac{1}{7}\left( 6 \hat{ i }  + 2 \hat{ j } - 3 \hat{ k } \right)\]
\[ = \vec{c} \]
\[ \vec{b} \times \vec{c} = \left( \frac{1}{7} \right) \left( \frac{1}{7} \right)\begin{vmatrix}\hat{ i } & \hat{ j }  & \hat{ k } \\ 3 & - 6 & 2 \\ 6 & 2 & - 3\end{vmatrix}\]
\[ = \frac{1}{49}\left( 14 \hat{ i }  + 21 \hat{ j }  + 42 \hat{ k } \right)\]
\[ = \frac{1}{49}\left[ 7 \left( 2 \hat{ i }  + 3 \hat{ j} + 6 \hat{ k }  \right) \right]\]
\[ = \frac{1}{7} \left( 2 \hat{ i }  + 3 \hat{ j }  + 6 \hat{ k  } \right)\]
\[ = \vec{a} \]
\[ \vec{c} \times \vec{a} = \left( \frac{1}{7} \right) \left( \frac{1}{7} \right)\begin{vmatrix}\hat{ i } & \hat{ j }  & k \\ 6 & 2 & - 3 \\ 2 & 3 & 6\end{vmatrix}\]
\[ = \frac{1}{49}\left( 21 \hat{ i } - 42 \hat{ j }  + 14 \hat{ k }  \right)\]
\[ = \frac{1}{49}\left[ 7 \left( 3 \hat{ i }  - 6 \hat{ j }  + 2 \hat{ k }  \right) \right]\]
\[ = \frac{1}{7} \left( 3 \hat{ i }  - 6 \hat{ j }  + 2 \hat { k } \right)\]
\[ = \vec{b} \]
\[\left| \vec{a} \right| = \frac{1}{7}\sqrt{4 + 9 + 36}\]
\[ = \frac{7}{7}\]
\[ = 1\]
\[\left| \vec{b} \right| = \frac{1}{7}\sqrt{9 + 36 + 4}\]
\[ = \frac{7}{7}\]
\[ = 1\]
\[\left| \vec{c} \right| = \frac{1}{7}\sqrt{36 + 4 + 9}\]
\[ = \frac{7}{7}\]
\[ = 1\]
\[\text{ Thus } , \vec{a} , \vec{b} \text{ and }  \vec{c} \text{ form a right handed orthogonal system of unit vectors. } \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 25: Vector or Cross Product - Exercise 25.1 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 25 Vector or Cross Product
Exercise 25.1 | Q 12 | पृष्ठ ३०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that `(veca - vecb) xx (veca + vecb) = 2(veca xx vecb)`.


Find λ and μ if  `(2hati + 6hatj + 27hatk) xx (hati + lambdahatj + muhatk) = vec0`.


Given that `veca.vecb = 0` and `veca xx vecb = 0` What can you conclude about the vectors `veca and vecb`?


Let the vectors `veca, vecb, vecc` given as `a_1hati + a_2hatj + a_3hatk, b_1hati + b_2hatj + b_3hatk, c_1hati + c_2hatj + c_3hatk` Then show that = `veca xx (vecb+ vecc) = veca xx vecb + veca xx vecc.`


If A, B, C are three non- collinear points with position vectors `vec a, vec b, vec c`, respectively, then show that the length of the perpendicular from Con AB is `|(vec a xx vec b)+(vec b xx vec c) + (vec b xx  vec a)|/|(vec b -  vec a)|`


If \[\vec{a} = 3 \hat { i } + 4 \hat { j } \text{ and }  \vec{b} = \hat { i  } + \hat{ j }  + \hat{ k } ,\]  find the value of \[\left| \vec{a} \times \vec{b} \right| .\]

 

Find the area of the parallelogram determined by the vector \[3 \hat{ i } + \hat{ j }  - 2 \hat{ k } \text{  and }  \hat{ i }  - 3 \hat{ j }  + 4 \hat{ k } \] .

 


Find the area of the parallelogram whose diagonals are  \[2 \hat{ i }+ \hat{ k } \text{ and } \hat{ i } + \hat{ j } + \hat{ k } \]

 


What inference can you draw if \[\vec{a} \times \vec{b} = \vec{0} \text{ and }  \vec{a} \cdot \vec{b} = 0 .\]

 

Find a unit vector perpendicular to the plane ABC, where the coordinates of AB and Care A (3, −1, 2), B (1, −1, −3) and C (4, −3, 1).


If abc are the lengths of sides, BCCA and AB of a triangle ABC, prove that \[\vec{BC} + \vec{CA} + \vec{AB} = \vec{0}\]  and deduce that \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} .\]

 
 

If  \[\vec{p} \text{ and }  \vec{q}\] are unit vectors forming an angle of 30°; find the area of the parallelogram having \[\vec{a} = \vec{p} + 2 \vec{q} \text{ and }  \vec{b} = 2 \vec{p} + \vec{q}\] as its diagonals.

 
 

 


Find the area of the triangle formed by OAB when \[\vec{OA} = \hat{ i } + 2 \hat{ j }  + 3 \hat{ k }  , \vec{OB} = - 3 \hat{ i }  - 2 \hat{ j }+ \hat{ k }  .\]


Find a unit vector perpendicular to each of the vectors \[\vec{a} + \vec{b} \text{ and }  \vec{a} - \vec{b} , \text{ where }  \vec{a} = 3 \hat{ i }  + 2 \hat{ j }  + 2 \hat{ k }  \text{ and }  \vec{b} = \hat{ i } + 2 \hat{ j }  - 2 \hat{ k }  .\]

 

If either  \[\vec{a} = \vec{0} \text{ or }  \vec{b} = \vec{0} , \text{ then }  \vec{a} \times \vec{b} = \vec{0} .\]  Is the converse true? Justify your answer with an example.

 

For any two vectors \[\vec{a}\] and \[\vec{b}\] , find \[\vec{a} . \left( \vec{b} \times \vec{a} \right) .\]

 
 
 
 

If   \[\vec{a} \text{ and }  \vec{b}\] are two vectors such that \[\left| \vec{a} \times \vec{b} \right| = \sqrt{3}\text{ and }  \vec{a} . \vec{b} = 1,\]  find the angle between.

 
 

 


Write a unit vector perpendicular to \[\hat{ i } + \hat{ j }  \text{ and }  \hat{ j }  + \hat{ k } .\]

 


If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} . \vec{b} \right| = \left| \vec{a} \times \vec{b} \right|,\]  write the angle between \[\vec{a} \text{ and } \vec{b} .\]

 
 

 


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then write the value of \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 .\]

 

 


If \[\vec{a}\] is a unit vector such that \[\vec{a} \times \hat{ i }  = \hat{ j }  , \text{ find }  \vec{a} . \hat{ i } \] .

 

Write the value of the area of the parallelogram determined by the vectors   \[2 \hat{ i }  \text{ and } 3 \hat{ j }  .\]

 

If \[\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}\] and \[\vec{a} \times \vec{b} = \vec{a} \times \vec{c,} \vec{a} \neq 0,\] then


The vector \[\vec{b} = 3 \hat { i }+ 4 \hat {k }\] is to be written as the sum of a vector \[\vec{\alpha}\] parallel to \[\vec{a} = \hat {i} + \hat {j}\] and a vector \[\vec{\beta}\] perpendicular to \[\vec{a}\]. Then \[\vec{\alpha} =\]


The unit vector perpendicular to the plane passing through points \[P\left( \hat{ i } - \hat{ j }  + 2 \hat{ k }  \right), Q\left( 2 \hat{ i } - \hat{ k } \right) \text{ and }  R\left( 2 \hat{ j }  + \hat{ k }  \right)\]  is 

 

If \[\vec{a,} \vec{b}\] represent the diagonals of a rhombus, then


If θ is the angle between the vectors \[2 \hat{ i }  - 2 \hat{ j}  + 4 \hat{ k }  \text{ and } 3 \hat{ i }  + \hat { j }  + 2 \hat{ k }  ,\]  then sin θ =

 

The value of \[\left( \vec{a} \times \vec{b} \right)^2\] is 

 

(a)  If `veca  =  hati - 2j + 3veck , vecb = 2hati + 3hatj - 5hatk,` prove that `veca and vecaxxvecb`  are perpendicular.


The number of vectors of unit length perpendicular to the vectors `vec"a" = 2hat"i" + hat"j" + 2hat"k"` and `vec"b" = hat"j" + hat"k"` is ______.


Find the area of the triangle with vertices A(1, l, 2), (2, 3, 5) and (1, 5, 5).


If `veca` and `vecb` are unit vectors inclined at an angle 30° to each other, then find the area of the parallelogram with `(veca + 3vecb)` and `(3veca + vecb)` as adjacent sides.


Let `hata` and `hatb` be two unit vectors such that the angle between them is `π/4`. If θ is the angle between the vectors `(hata + hatb)` and `(hata xx 2hatb + 2(hata xx hatb))`, then the value of 164 cos2θ is equal to ______.


Let `veca = 2hati + hatj - 2hatk, vecb = hati + hatj`. If `vecc` is a vector such that `veca . vecc = \|vecc|, |vecc - veca| = 2sqrt(2)` and the angle between `veca xx vecb` and `vecc` is 30°, then `|(veca xx vecb) xx vecc|` equals ______.


Find the area of the parallelogram whose diagonals are `hati - 3hatj + hatk` and `hati + hatj + hatk`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×