Advertisements
Advertisements
प्रश्न
Given \[\vec{a} = \frac{1}{7}\left( 2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k } \right), \vec{b} = \frac{1}{7}\left( 3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } \right), \vec{c} = \frac{1}{7}\left( 6 \hat{ i } + 2 \hat{ j } - 3 \hat{ k }\right), \hat{ i } , \hat{ j } , \hat{ k } \] being a right handed orthogonal system of unit vectors in space, show that \[\vec{a} , \vec{b} , \vec{c}\] is also another system.
उत्तर
\[\text{ Given } : \]
\[ \vec{a} = \frac{1}{7} \left( 2 \hat{ i } + 3 \hat{ j }+ 6 \hat{ k } \right)\]
\[ \vec{b} = \frac{1}{7} \left( 3 \hat{ i } - 6 \hat{ j } + 2 \hat { k } \right)\]
\[ \vec{c} = \frac{1}{7}\left( 6 \hat{ i } + 2 \hat{ j } - 3 \hat{ k} \right)\]
\[ \vec{a} \times \vec{b} = \left( \frac{1}{7} \right) \left( \frac{1}{7} \right)\begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ 2 & 3 & 6 \\ 3 & - 6 & 2\end{vmatrix}\]
\[ = \frac{1}{49}\left( 42 \hat{ i } + 14 \hat{ j } - 21 \hat{ k } \right)\]
\[ = \frac{1}{49}\left[ 7 \left( 6 \hat{ i } + 2 \hat{ j } - 3 \hat{ k } \right) \right]\]
\[ = \frac{1}{7}\left( 6 \hat{ i } + 2 \hat{ j } - 3 \hat{ k } \right)\]
\[ = \vec{c} \]
\[ \vec{b} \times \vec{c} = \left( \frac{1}{7} \right) \left( \frac{1}{7} \right)\begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ 3 & - 6 & 2 \\ 6 & 2 & - 3\end{vmatrix}\]
\[ = \frac{1}{49}\left( 14 \hat{ i } + 21 \hat{ j } + 42 \hat{ k } \right)\]
\[ = \frac{1}{49}\left[ 7 \left( 2 \hat{ i } + 3 \hat{ j} + 6 \hat{ k } \right) \right]\]
\[ = \frac{1}{7} \left( 2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k } \right)\]
\[ = \vec{a} \]
\[ \vec{c} \times \vec{a} = \left( \frac{1}{7} \right) \left( \frac{1}{7} \right)\begin{vmatrix}\hat{ i } & \hat{ j } & k \\ 6 & 2 & - 3 \\ 2 & 3 & 6\end{vmatrix}\]
\[ = \frac{1}{49}\left( 21 \hat{ i } - 42 \hat{ j } + 14 \hat{ k } \right)\]
\[ = \frac{1}{49}\left[ 7 \left( 3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } \right) \right]\]
\[ = \frac{1}{7} \left( 3 \hat{ i } - 6 \hat{ j } + 2 \hat { k } \right)\]
\[ = \vec{b} \]
\[\left| \vec{a} \right| = \frac{1}{7}\sqrt{4 + 9 + 36}\]
\[ = \frac{7}{7}\]
\[ = 1\]
\[\left| \vec{b} \right| = \frac{1}{7}\sqrt{9 + 36 + 4}\]
\[ = \frac{7}{7}\]
\[ = 1\]
\[\left| \vec{c} \right| = \frac{1}{7}\sqrt{36 + 4 + 9}\]
\[ = \frac{7}{7}\]
\[ = 1\]
\[\text{ Thus } , \vec{a} , \vec{b} \text{ and } \vec{c} \text{ form a right handed orthogonal system of unit vectors. } \]
APPEARS IN
संबंधित प्रश्न
Show that `(veca - vecb) xx (veca + vecb) = 2(veca xx vecb)`.
Find λ and μ if `(2hati + 6hatj + 27hatk) xx (hati + lambdahatj + muhatk) = vec0`.
Given that `veca.vecb = 0` and `veca xx vecb = 0` What can you conclude about the vectors `veca and vecb`?
Let the vectors `veca, vecb, vecc` given as `a_1hati + a_2hatj + a_3hatk, b_1hati + b_2hatj + b_3hatk, c_1hati + c_2hatj + c_3hatk` Then show that = `veca xx (vecb+ vecc) = veca xx vecb + veca xx vecc.`
If A, B, C are three non- collinear points with position vectors `vec a, vec b, vec c`, respectively, then show that the length of the perpendicular from Con AB is `|(vec a xx vec b)+(vec b xx vec c) + (vec b xx vec a)|/|(vec b - vec a)|`
If \[\vec{a} = 3 \hat { i } + 4 \hat { j } \text{ and } \vec{b} = \hat { i } + \hat{ j } + \hat{ k } ,\] find the value of \[\left| \vec{a} \times \vec{b} \right| .\]
Find the area of the parallelogram determined by the vector \[3 \hat{ i } + \hat{ j } - 2 \hat{ k } \text{ and } \hat{ i } - 3 \hat{ j } + 4 \hat{ k } \] .
Find the area of the parallelogram whose diagonals are \[2 \hat{ i }+ \hat{ k } \text{ and } \hat{ i } + \hat{ j } + \hat{ k } \]
What inference can you draw if \[\vec{a} \times \vec{b} = \vec{0} \text{ and } \vec{a} \cdot \vec{b} = 0 .\]
Find a unit vector perpendicular to the plane ABC, where the coordinates of A, B and Care A (3, −1, 2), B (1, −1, −3) and C (4, −3, 1).
If a, b, c are the lengths of sides, BC, CA and AB of a triangle ABC, prove that \[\vec{BC} + \vec{CA} + \vec{AB} = \vec{0}\] and deduce that \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} .\]
If \[\vec{p} \text{ and } \vec{q}\] are unit vectors forming an angle of 30°; find the area of the parallelogram having \[\vec{a} = \vec{p} + 2 \vec{q} \text{ and } \vec{b} = 2 \vec{p} + \vec{q}\] as its diagonals.
Find the area of the triangle formed by O, A, B when \[\vec{OA} = \hat{ i } + 2 \hat{ j } + 3 \hat{ k } , \vec{OB} = - 3 \hat{ i } - 2 \hat{ j }+ \hat{ k } .\]
Find a unit vector perpendicular to each of the vectors \[\vec{a} + \vec{b} \text{ and } \vec{a} - \vec{b} , \text{ where } \vec{a} = 3 \hat{ i } + 2 \hat{ j } + 2 \hat{ k } \text{ and } \vec{b} = \hat{ i } + 2 \hat{ j } - 2 \hat{ k } .\]
If either \[\vec{a} = \vec{0} \text{ or } \vec{b} = \vec{0} , \text{ then } \vec{a} \times \vec{b} = \vec{0} .\] Is the converse true? Justify your answer with an example.
For any two vectors \[\vec{a}\] and \[\vec{b}\] , find \[\vec{a} . \left( \vec{b} \times \vec{a} \right) .\]
If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} \times \vec{b} \right| = \sqrt{3}\text{ and } \vec{a} . \vec{b} = 1,\] find the angle between.
Write a unit vector perpendicular to \[\hat{ i } + \hat{ j } \text{ and } \hat{ j } + \hat{ k } .\]
If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} . \vec{b} \right| = \left| \vec{a} \times \vec{b} \right|,\] write the angle between \[\vec{a} \text{ and } \vec{b} .\]
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then write the value of \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 .\]
If \[\vec{a}\] is a unit vector such that \[\vec{a} \times \hat{ i } = \hat{ j } , \text{ find } \vec{a} . \hat{ i } \] .
Write the value of the area of the parallelogram determined by the vectors \[2 \hat{ i } \text{ and } 3 \hat{ j } .\]
If \[\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}\] and \[\vec{a} \times \vec{b} = \vec{a} \times \vec{c,} \vec{a} \neq 0,\] then
The vector \[\vec{b} = 3 \hat { i }+ 4 \hat {k }\] is to be written as the sum of a vector \[\vec{\alpha}\] parallel to \[\vec{a} = \hat {i} + \hat {j}\] and a vector \[\vec{\beta}\] perpendicular to \[\vec{a}\]. Then \[\vec{\alpha} =\]
The unit vector perpendicular to the plane passing through points \[P\left( \hat{ i } - \hat{ j } + 2 \hat{ k } \right), Q\left( 2 \hat{ i } - \hat{ k } \right) \text{ and } R\left( 2 \hat{ j } + \hat{ k } \right)\] is
If \[\vec{a,} \vec{b}\] represent the diagonals of a rhombus, then
If θ is the angle between the vectors \[2 \hat{ i } - 2 \hat{ j} + 4 \hat{ k } \text{ and } 3 \hat{ i } + \hat { j } + 2 \hat{ k } ,\] then sin θ =
The value of \[\left( \vec{a} \times \vec{b} \right)^2\] is
(a) If `veca = hati - 2j + 3veck , vecb = 2hati + 3hatj - 5hatk,` prove that `veca and vecaxxvecb` are perpendicular.
The number of vectors of unit length perpendicular to the vectors `vec"a" = 2hat"i" + hat"j" + 2hat"k"` and `vec"b" = hat"j" + hat"k"` is ______.
Find the area of the triangle with vertices A(1, l, 2), (2, 3, 5) and (1, 5, 5).
If `veca` and `vecb` are unit vectors inclined at an angle 30° to each other, then find the area of the parallelogram with `(veca + 3vecb)` and `(3veca + vecb)` as adjacent sides.
Let `hata` and `hatb` be two unit vectors such that the angle between them is `π/4`. If θ is the angle between the vectors `(hata + hatb)` and `(hata xx 2hatb + 2(hata xx hatb))`, then the value of 164 cos2θ is equal to ______.
Let `veca = 2hati + hatj - 2hatk, vecb = hati + hatj`. If `vecc` is a vector such that `veca . vecc = \|vecc|, |vecc - veca| = 2sqrt(2)` and the angle between `veca xx vecb` and `vecc` is 30°, then `|(veca xx vecb) xx vecc|` equals ______.
Find the area of the parallelogram whose diagonals are `hati - 3hatj + hatk` and `hati + hatj + hatk`.