मराठी

Find a Unit Vector Perpendicular to Each of the Vectors → a + → B and → a − → B , Where → a = 3 ^ I + 2 ^ J + 2 ^ K and → B = ^ I + 2 ^ J − 2 ^ K . - Mathematics

Advertisements
Advertisements

प्रश्न

Find a unit vector perpendicular to each of the vectors \[\vec{a} + \vec{b} \text{ and }  \vec{a} - \vec{b} , \text{ where }  \vec{a} = 3 \hat{ i }  + 2 \hat{ j }  + 2 \hat{ k }  \text{ and }  \vec{b} = \hat{ i } + 2 \hat{ j }  - 2 \hat{ k }  .\]

 
बेरीज

उत्तर

\[\text{ Given } : \]

\[ \vec{a} = 3 \hat{ i } + 2 \hat{ j } + 2 \hat{ k }  \]

\[ \vec{b} = \hat{ i } + 2 \hat{ j } - 2 \hat{ k } \]

\[ \therefore \vec{a} + \vec{b} = 4 \hat{ i } + 4 \hat{ j }  + 0 \hat{ k }  \]

\[ \vec{a} - \vec{b} = 2 \hat{ i } + 0 \hat{ j }  + 4 \hat{ k }  \]

\[\left( \vec{a} + \vec{b} \right) \times \left( \vec{a} - \vec{b} \right) = \begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ 4 & 4 & 0 \\ 2 & 0 & 4\end{vmatrix}\]

\[ = 16 \hat{ i } - 16 \hat{ j }  - 8 \hat{ k }  \]

\[ \therefore \left| \left( \vec{a} + \vec{b} \right) \times \left( \vec{a} - \vec{b} \right) \right| = \sqrt{256 + 256 + 64}\]

\[ = \sqrt{576}\]

\[ = 24\]

\[\text{ Unit vector perpendicular to both } \vec{a} + \vec{b} \text{ and } \vec{a} - \vec{b} =\frac{\left( \vec{a} + \vec{b} \right) \times \left( \vec{a} - \vec{b} \right)}{\left| \left( \vec{a} + \vec{b} \right) \times \left( \vec{a} - \vec{b} \right) \right|}\]

\[ = \frac{16 \hat{ i } - 16 \hat{ j }  - 8 \hat{ k } }{24}\]

\[ = \frac{8 \left( 2 \hat{ i } - 2 \hat{ j } - \hat{ k }  \right)}{24}\]

\[ = \frac{1}{3}\left( 2 \hat{ i }  - 2 \hat{ j }  - \hat{ k } \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 25: Vector or Cross Product - Exercise 25.1 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 25 Vector or Cross Product
Exercise 25.1 | Q 28 | पृष्ठ ३१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find λ and μ if  `(2hati + 6hatj + 27hatk) xx (hati + lambdahatj + muhatk) = vec0`.


Let the vectors `veca, vecb, vecc` given as `a_1hati + a_2hatj + a_3hatk, b_1hati + b_2hatj + b_3hatk, c_1hati + c_2hatj + c_3hatk` Then show that = `veca xx (vecb+ vecc) = veca xx vecb + veca xx vecc.`


Find the area of the parallelogram whose adjacent sides are determined by the vector `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.


Area of a rectangle having vertices A, B, C, and D with position vectors `-hati + 1/2 hatj + 4hatk, hati + 1/2 hatj + 4hatk, and -hati - 1/2j + 4hatk,` respectively is ______.


If θ is the angle between two vectors `hati - 2hatj + 3hatk and 3hati - 2hatj + hatk` find `sin theta`


Let `veca = 4hati + 5hatj - hatk`, `vecb  = hati - 4hatj + 5hatk` and `vecc = 3hati + hatj - hatk`. Find a vector `vecd` which is perpendicular to both `vecc` and `vecb and vecd.veca = 21`


Find a unit vector perpendicular to the plane containing the vectors  \[\vec{a} = 2 \hat{ i } + \hat{ j }  + \hat{ k } \text{ and }  \vec{b} = \hat{ i } + 2 \hat{ j }  + \hat{ k } .\]

 


Find the magnitude of \[\vec{a} = \left( 3 \hat{ k }  + 4 \hat{ j } \right) \times \left( \hat{ i }  + \hat{ j }  - \hat{ k }  \right) .\]

 

Find a vector whose length is 3 and which is perpendicular to the vector \[\vec{a} = 3 \hat{ i }  + \hat{ j  } - 4 \hat{ k }  \text{ and }  \vec{b} = 6 \hat{ i }  + 5 \hat{ j }  - 2 \hat{ k } .\]


If \[\vec{a} = 2 \hat{ i }  + 5 \hat{ j }  - 7 \hat{ k }  , \vec{b} = - 3 \hat{ i } + 4 \hat{ j }  + \hat{ k }  \text{ and } \vec{c} = \hat{ i }  - 2 \hat{ j }  - 3 \hat{ k }  ,\] compute \[\left( \vec{a} \times \vec{b} \right) \times \vec{c} \text{ and }  \vec{a} \times \left( \vec{b} \times \vec{c} \right)\]  and verify that these are not equal.

 
 
 

What inference can you draw if \[\vec{a} \times \vec{b} = \vec{0} \text{ and }  \vec{a} \cdot \vec{b} = 0 .\]

 

If abc are the lengths of sides, BCCA and AB of a triangle ABC, prove that \[\vec{BC} + \vec{CA} + \vec{AB} = \vec{0}\]  and deduce that \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} .\]

 
 

For any two vectors \[\vec{a} \text{ and }  \vec{b}\] , prove that \[\left| \vec{a} \times \vec{b} \right|^2 = \begin{vmatrix}\vec{a} . \vec{a} & & \vec{a} . \vec{b} \\ \vec{b} . \vec{a} & & \vec{b} . \vec{b}\end{vmatrix}\]

 
 

If either  \[\vec{a} = \vec{0} \text{ or }  \vec{b} = \vec{0} , \text{ then }  \vec{a} \times \vec{b} = \vec{0} .\]  Is the converse true? Justify your answer with an example.

 

Using vectors, find the area of the triangle with vertice A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5) .


If  \[\left| \vec{a} \times \vec{b} \right|^2 + \left| \vec{a} \cdot \vec{b} \right|^2 = 400\] and  \[\left| \vec{a} \right| = 5,\]  then write the value of \[\left| \vec{b} \right| .\]

 

Write the value of  \[\hat{ i } . \left( \hat{ j } \times \hat{ k }  \right) + \hat{ j }  . \left( \hat{ k } \times \hat{ i }  \right) + \hat{ k }  . \left( \hat{ i }  \times \hat{ j }  \right) .\]

 


Write the expression for the area of the parallelogram having \[\vec{a} \text{ and } \vec{b}\] as its diagonals.

 
 

If \[\vec{a} \text{ and }  \vec{b}\] are two vectors of magnitudes 3 and \[\frac{\sqrt{2}}{3}\]  espectively such that \[\vec{a} \times \vec{b}\] is a unit vector. Write the angle between \[\vec{a} \text{ and }  \vec{b} .\]

 
 
 

 


For any two vectors \[\vec{a} \text{ and } \vec{b} , \text{ find } \left( \vec{a} \times \vec{b} \right) . \vec{b} .\]

 

Write a unit vector perpendicular to \[\hat{ i } + \hat{ j }  \text{ and }  \hat{ j }  + \hat{ k } .\]

 


If \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 = 144\]  and \[\left| \vec{a} \right| = 4,\]  find \[\left| \vec{b} \right|\] . 

 
 

 


If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} . \vec{b} \right| = \left| \vec{a} \times \vec{b} \right|,\]  write the angle between \[\vec{a} \text{ and } \vec{b} .\]

 
 

 


If  \[\vec{c}\] is a unit vector perpendicular to the vectors \[\vec{a} \text{ and } \vec{b} ,\]  write another unit vector perpendicular to \[\vec{a} \text{ and }  \vec{b} .\]

 
 

 


If \[\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}\] and \[\vec{a} \times \vec{b} = \vec{a} \times \vec{c,} \vec{a} \neq 0,\] then


If \[\hat{ i }  , \hat{ j }  , \hat{ k } \] are unit vectors, then


If \[\left| \vec{a} \times \vec{b} \right| = 4, \left| \vec{a} \cdot \vec{b} \right| = 2, \text{ then }  \left| \vec{a} \right|^2 \left| \vec{b} \right|^2 =\]


The value of \[\left( \vec{a} \times \vec{b} \right)^2\] is 

 

The value of λ for which the two vectors `2hati - hatj + 2hatk` and `3hati + λhatj + hatk` are perpendicular is ______.


The number of vectors of unit length perpendicular to the vectors `vec"a" = 2hat"i" + hat"j" + 2hat"k"` and `vec"b" = hat"j" + hat"k"` is ______.


Let `veca = hati + hatj, vecb = hati - hatj` and `vecc = hati + hatj + hatk`. If `hatn` is a unit vector such that `veca.hatn` = 0 and `vecb.hatn` = 0, then find `|vecc.hatn|`.


The two adjacent sides of a parallelogram are represented by vectors `2hati - 4hatj + 5hatk` and `hati - 2hatj - 3hatk`. Find the unit vector parallel to one of its diagonals, Also, find the area of the parallelogram.


If the vector `vecb = 3hatj + 4hatk` is written as the sum of a vector `vec(b_1)`, parallel to `veca = hati + hatj` and a vector `vec(b_2)`, perpendicular to `veca`, then `vec(b_1) xx vec(b_2)` is equal to ______.


Find the area of the parallelogram whose diagonals are `hati - 3hatj + hatk` and `hati + hatj + hatk`.


If `veca xx vecb = veca xx vecc` where `veca, vecb` and `vecc` are non-zero vectors, then prove that either `vecb = vecc` or `veca` and `(vecb - vecc)` are parallel.


If `veca` is a unit vector perpendicular to `vecb` and `(veca + 2vecb).(3veca - vecb) = -5`, find `|vecb|`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×