Advertisements
Advertisements
प्रश्न
If \[\vec{a} = 2 \hat{ i } + 5 \hat{ j } - 7 \hat{ k } , \vec{b} = - 3 \hat{ i } + 4 \hat{ j } + \hat{ k } \text{ and } \vec{c} = \hat{ i } - 2 \hat{ j } - 3 \hat{ k } ,\] compute \[\left( \vec{a} \times \vec{b} \right) \times \vec{c} \text{ and } \vec{a} \times \left( \vec{b} \times \vec{c} \right)\] and verify that these are not equal.
उत्तर
\[\text{ Given } : \]
\[ \vec{a} = 2 \hat{ i } + 5 \hat{ j } - 7 \hat{ k }\]
\[ \vec{b} = - 3 \hat{ i } + 4 \hat{ j } + \hat{ k } \]
\[ \vec{c} = \hat{ i } - 2 \hat{ j } - 3 \hat{ k } \]
\[ \therefore \vec{a} \times \vec{b} = \begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ 2 & 5 & - 7 \\ - 3 & 4 & 1\end{vmatrix}\]
\[ = \left( 5 + 28 \right) \hat{ i } - \left( 2 - 21 \right) \hat{ j } + \left( 8 + 15 \right) \hat{ k } \]
\[ = 33 \hat{ i } + 19 \hat{ j }+ 23 \hat{ k } \]
\[ \Rightarrow \left( \vec{a} \times \vec{b} \right) \times \vec{c} = \begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ 33 & 19 & 23 \\ 1 & - 2 & - 3\end{vmatrix}\]
\[ = \left( - 57 + 46 \right) \hat{ i } - \left( - 99 - 23 \right) \hat{ j } + \left( - 66 - 19 \right) \hat{ k } \]
\[ \Rightarrow \left( \vec{a} \times \vec{b} \right) \times \vec{c} = - 11 \hat{ i } + 122 \hat{ j } - 85 \hat{ k} . . . (1)\]
\[ \therefore \vec{b} \times \vec{c} = \begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ - 3 & 4 & 1 \\ 1 & - 2 & - 3\end{vmatrix}\]
\[ = \left( - 12 + 2 \right) \hat{ i } - \left( 9 - 1 \right) \hat{ j } + \left( 6 - 4 \right) \hat{ k } \]
\[ = - 10 \hat{ i } - 8 \hat{ j }+ 2 \hat{ k } \]
\[ \Rightarrow \vec{a} \times \left( \vec{b} \times \vec{c} \right) = \begin{vmatrix}\hat{ i } & \hat{ j } & \hat { k } \\ 2 & 5 & - 7 \\ - 10 & - 8 & 2\end{vmatrix}\]
\[ = \left( 10 - 56 \right) \hat{ i } - \left( 4 - 70 \right) \hat{ j } + \left( - 16 + 50 \right) \hat{ k } \]
\[ \Rightarrow \vec{a} \times \left( \vec{b} \times \vec{c} \right) = - 46 \hat{ i } + 66 \hat{ j } + 34 \hat{ k } . . . (2)\]
\[\text{ From (1) and (2), we get } \]
\[\left( \vec{a} \times \vec{b} \right) \times \vec{c} \neq \vec{a} \times \left( \vec{b} \times \vec{c} \right)\]
APPEARS IN
संबंधित प्रश्न
If `veca = 2hati + 2hatj + 3hatk, vecb = -veci + 2hatj + hatk and vecc = 3hati + hatj` are such that `veca + lambdavecb` is perpendicular to `vecc`, then find the value of λ.
Find a unit vector perpendicular to each of the vector `veca + vecb` and `veca - vecb`, where `veca = 3hati + 2hatj + 2hatk` and `vecb = hati + 2hatj - 2hatk`.
Given that `veca.vecb = 0` and `veca xx vecb = 0` What can you conclude about the vectors `veca and vecb`?
Let the vectors `veca, vecb, vecc` given as `a_1hati + a_2hatj + a_3hatk, b_1hati + b_2hatj + b_3hatk, c_1hati + c_2hatj + c_3hatk` Then show that = `veca xx (vecb+ vecc) = veca xx vecb + veca xx vecc.`
If either `veca = vec0` or `vecb = vec0`, then `veca xxvecb = vec0`. Is the converse true? Justify your answer with an example.
Find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5).
\[\text{ If } \vec{a} = \hat { i } + 3 \hat { j } - 2 \hat { k } \text{ and } \vec{b} = - \hat { i } + 3 \hat { k } , \text{ find } \left| \vec{a} \times \vec{b} \right| .\]
If \[\vec{a} = 2 \hat{ i } + \hat{ k } , \vec{b} = \hat { i } + \hat{ j } + \hat{ k } ,\] find the magnitude of \[\vec{a} \times \vec{b} .\]
Find the area of the parallelogram determined by the vector \[\hat{ i } - 3 \hat{ j } + \hat{ k } \text{ and } \hat{ i } + \hat{ j } + \hat{ k } .\]
Given \[\vec{a} = \frac{1}{7}\left( 2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k } \right), \vec{b} = \frac{1}{7}\left( 3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } \right), \vec{c} = \frac{1}{7}\left( 6 \hat{ i } + 2 \hat{ j } - 3 \hat{ k }\right), \hat{ i } , \hat{ j } , \hat{ k } \] being a right handed orthogonal system of unit vectors in space, show that \[\vec{a} , \vec{b} , \vec{c}\] is also another system.
if \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 7 \text{ and } \vec{a} \times \vec{b} = 3 \hat{ i } + 2 \hat{ j } + 6 \hat{ k } ,\] find the angle between \[\vec{a} \text{ and } \vec{b} .\]
What inference can you draw if \[\vec{a} \times \vec{b} = \vec{0} \text{ and } \vec{a} \cdot \vec{b} = 0 .\]
If \[\vec{a,} \vec{b,} \vec{c}\] are three unit vectors such that \[\vec{a} \times \vec{b} = \vec{c} , \vec{b} \times \vec{c} = \vec{a,} \vec{c} \times \vec{a} = \vec{b} .\] Show that \[\vec{a,} \vec{b,} \vec{c}\] form an orthonormal right handed triad of unit vectors.
Let \[\vec{a} = \hat{ i } + 4 \hat{ j } + 2 \hat{ k } , \vec{b} = 3 \hat{ i }- 2 \hat{ j } + 7 \hat{ k } \text{ and } \vec{c} = 2 \hat{ i } - \hat{ j } + 4 \hat{ k } .\] Find a vector \[\vec{d}\] which is perpendicular to both \[\vec{a} \text{ and } \vec{d}\] \[\text{ and } \vec{c} \cdot \vec{d} = 15 .\]
Using vectors find the area of the triangle with vertices, A (2, 3, 5), B (3, 5, 8) and C (2, 7, 8).
If \[\left| \vec{a} \times \vec{b} \right|^2 + \left| \vec{a} \cdot \vec{b} \right|^2 = 400\] and \[\left| \vec{a} \right| = 5,\] then write the value of \[\left| \vec{b} \right| .\]
Write the value of \[\hat{ i } . \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } . \left( \hat{ k } \times \hat{ i } \right) + \hat{ k } . \left( \hat{ i } \times \hat{ j } \right) .\]
Write the value of \[\hat{ i } \times \left(\hat{ j } \times \hat{ k } \right) .\]
If \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 = 144\] and \[\left| \vec{a} \right| = 4,\] find \[\left| \vec{b} \right|\] .
If \[\vec{a}\] is a unit vector such that \[\vec{a} \times \hat{ i } = \hat{ j } , \text{ find } \vec{a} . \hat{ i } \] .
Find the angle between two vectors \[\vec{a} \text{ and } \vec{b}\] with magnitudes 1 and 2 respectively and when \[\left| \vec{a} \times \vec{b} \right| = \sqrt{3} .\]
Vectors \[\vec{a} \text{ and } \vec{b}\] \[\left| \vec{a} \right| = \sqrt{3}, \left| \vec{b} \right| = \frac{2}{3}\text{ and } \left( \vec{a} \times \vec{b} \right)\] is a unit vector. Write the angle between \[\vec{a} \text{ and } \vec{b}\] .
Find λ, if \[\left( 2 \hat{ i } + 6 \hat{ j } + 14 \hat{ k } \right) \times \left( \hat{ i } - \lambda \hat{ j } + 7 \hat{ k } \right) = \vec{0} .\]
Write the number of vectors of unit length perpendicular to both the vectors \[\vec{a} = 2 \hat{ i } + \hat{ j } + 2 \hat{ k } \text{ and } \vec{b} = \hat{ j } + \hat{ k } \] .
Write the angle between the vectors \[\vec{a} \times \vec{b}\] and \[\vec{b} \times \vec{a}\] .
If \[\vec{a}\] is any vector, then \[\left( \vec{a} \times \hat{ i } \right)^2 + \left( \vec{a} \times \hat{ j } \right)^2 + \left( \vec{a} \times \hat{ k } \right)^2 =\]
If \[\left| \vec{a} \times \vec{b} \right| = 4, \left| \vec{a} \cdot \vec{b} \right| = 2, \text{ then } \left| \vec{a} \right|^2 \left| \vec{b} \right|^2 =\]
If θ is the angle between any two vectors `bara` and `barb` and `|bara · barb| = |bara xx barb|` then θ is equal to ______.
Find a unit vector perpendicular to both the vectors `veca and vecb` , where `veca = hat i - 7 hatj +7hatk` and `vecb = 3hati - 2hatj + 2hatk` .
Let `veca` and `vecb` be two unit vectors and θ is the angle between them, Then `veca + vecb` is a unit vector if-
Let `hata` and `hatb` be two unit vectors such that the angle between them is `π/4`. If θ is the angle between the vectors `(hata + hatb)` and `(hata xx 2hatb + 2(hata xx hatb))`, then the value of 164 cos2θ is equal to ______.
Let `veca = 2hati + hatj - 2hatk, vecb = hati + hatj`. If `vecc` is a vector such that `veca . vecc = \|vecc|, |vecc - veca| = 2sqrt(2)` and the angle between `veca xx vecb` and `vecc` is 30°, then `|(veca xx vecb) xx vecc|` equals ______.
If `|veca xx vecb| = sqrt(3)` and `veca.vecb` = – 3, then angle between `veca` and `vecb` is ______.
Find the area of the parallelogram whose diagonals are `hati - 3hatj + hatk` and `hati + hatj + hatk`.
If `veca` is a unit vector perpendicular to `vecb` and `(veca + 2vecb).(3veca - vecb) = -5`, find `|vecb|`.