मराठी

Vectors → a and → b | → a | = √ 3 , ∣ ∣ → b ∣ ∣ = 2 3 and ( → a × → b ) is a unit vector. Write the angle between → a and → b . - Mathematics

Advertisements
Advertisements

प्रश्न

Vectors  a and b |a|=3,|b|=23 and (a×b)  is a unit vector. Write the angle between a and b .

 

टीपा लिहा

उत्तर

 Given :a×b is a unit vector .
|a×b|=1...(1)
 Letθ be the angle between a and b.
 We know 
|a×b|=|a||b|sinθ
 From (1), we get
1=(3)(23)sinθ
sinθ=32
θ=π3

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 25: Vector or Cross Product - very short answers [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 25 Vector or Cross Product
very short answers | Q 25 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find a unit vector perpendicular to each of the vector  a +b and a -b, where a =3i^+2j^+2k^ and b=i^+2j^ -2k^.


Find λ and μ if  (2i^+6j^+27k^)×(i^+λj^+μk^)=0.


If A, B, C are three non- collinear points with position vectors a,b,c, respectively, then show that the length of the perpendicular from Con AB is |(a×b)+(b×c)+(b× a)||(b- a)|


Find the area of the parallelogram determined by the vector 2i^ and 3j^ .

 


Find the area of the parallelogram whose diagonals are  2i^+k^ and i^+j^+k^

 


Find the area of the parallelogram whose diagonals are  3i^+4j^ and i^+j^+k^

 


 If |a|=2,|b|=5 and |a×b|=8, find ab.

 


if a=i^2j^+3k^, and b=2i^+3j^5k^,  then find a×b.  Verify th at a and a×b are perpendicular to each other.

 
 
 

 


 If |a|=26,|b|=7 and |a×b|=35, find a.b.

 


If either  a=0 or b=0, then a×b=0.  Is the converse true? Justify your answer with an example.

 

Using vectors, find the area of the triangle with vertice A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5) .


Find all vectors of magnitude 103 that are perpendicular to the plane of i^+2j^+k^ and i^+3j^+4k^ .

 

Define vector product of two vectors.

 

Write the value of  i^.(j^×k^)+j^.(k^×i^)+k^.(j^×i^).

 


Write the value of  i^.(j^×k^)+j^.(k^×i^)+k^.(i^×j^).

 


If a and b are two vectors of magnitudes 3 and 23  espectively such that a×b is a unit vector. Write the angle between a and b.

 
 
 

 


 If |a|=10,|b|=2 and |a×b|=16, find a.b.

 


If   a and b are two vectors such that |a×b|=3 and a.b=1,  find the angle between.

 
 

 


If a and b are two vectors such that |a.b|=|a×b|,  write the angle between a and b.

 
 

 


If a is a unit vector such that a×i^=j^, find a.i^ .

 

Write the value of (i^×j^)k^+(j^+k^)j^

 

Find a vector of magnitude 171  which is perpendicular to both of the vectors a=i^+2j^3k^  and  a=i^+2j^3k^

 
 

Write the angle between the vectors  a×b  and  b×a .

 

 


If ab=ac and a×b=a×c,a0, then


The vector b=3i^+4k^ is to be written as the sum of a vector α parallel to a=i^+j^ and a vector β perpendicular to a. Then α=


Vectors a and b are inclined at angle θ = 120°. If |a|=1,|b|=2, then  [(a+3b)×(3ab)]2  is equal to 

 
  

If i^,j^,k^ are unit vectors, then


If θ is the angle between the vectors 2i^2j^+4k^ and 3i^+j^+2k^,  then sin θ =

 

The number of vectors of unit length perpendicular to the vectors a=2i^+j^+2k^ and b=j^+k^ is ______.


If a and b are unit vectors inclined at an angle 30° to each other, then find the area of the parallelogram with (a+3b) and (3a+b) as adjacent sides.


Let a=2i^+j^-2k^,b=i^+j^. If c is a vector such that a.c=|c|,|c-a|=22 and the angle between a×b and c is 30°, then |(a×b)×c| equals ______.


If the angle between a and b is π3 and |a×b|=33, then the value of a.b is ______.


Find the area of the parallelogram whose diagonals are i^-3j^+k^ and i^+j^+k^.


If a and b are two non-zero vectors such that |a×b|=a.b, find the angle between a and b.


If a is a unit vector perpendicular to b and (a+2b).(3a-b)=-5, find |b|.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.