Advertisements
Advertisements
प्रश्न
Find the area of the parallelogram whose diagonals are `hati - 3hatj + hatk` and `hati + hatj + hatk`.
उत्तर
Diagonals of a parallelogram
`vecd_1 = hati - 3hatj + hatk`,
`vecd_2 = hati + hatj + hatk`
Now `vecd_1 xx vecd_2 = |(hati, hatj, hatk),(1, -3, 1),(1, 1, 1)|`
= `(-3 - 1)hati - (1 - 1)hatj + (1 + 3)hatk`
= `-4hati - 0hatj + 4hatk`
∵ Area of a parallelogram
= `1/2 |vecd_1 xx vecd_2|`
= `1/2 sqrt((-4)^2 + 0 + 4^2)`
= `1/2 xx sqrt(16 + 16)`
= `1/2 xx sqrt(32)`
= `1/2 xx 4sqrt(2)`
= `2sqrt(2)` sq.units
APPEARS IN
संबंधित प्रश्न
If a unit vector `veca` makes an angles `pi/3` with `hati, pi/4` with `hatj` and an acute angle θ with `hatk`, then find θ and, hence the compounds of `veca`.
Given that `veca.vecb = 0` and `veca xx vecb = 0` What can you conclude about the vectors `veca and vecb`?
If either `veca = vec0` or `vecb = vec0`, then `veca xxvecb = vec0`. Is the converse true? Justify your answer with an example.
Find the area of the parallelogram whose adjacent sides are determined by the vector `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.
Area of a rectangle having vertices A, B, C, and D with position vectors `-hati + 1/2 hatj + 4hatk, hati + 1/2 hatj + 4hatk, and -hati - 1/2j + 4hatk,` respectively is ______.
If \[\vec{a} = 2 \hat{ i } + \hat{ k } , \vec{b} = \hat { i } + \hat{ j } + \hat{ k } ,\] find the magnitude of \[\vec{a} \times \vec{b} .\]
Find the area of the parallelogram determined by the vector \[\hat{ i } - 3 \hat{ j } + \hat{ k } \text{ and } \hat{ i } + \hat{ j } + \hat{ k } .\]
if \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 7 \text{ and } \vec{a} \times \vec{b} = 3 \hat{ i } + 2 \hat{ j } + 6 \hat{ k } ,\] find the angle between \[\vec{a} \text{ and } \vec{b} .\]
Find the area of the triangle formed by O, A, B when \[\vec{OA} = \hat{ i } + 2 \hat{ j } + 3 \hat{ k } , \vec{OB} = - 3 \hat{ i } - 2 \hat{ j }+ \hat{ k } .\]
The two adjacent sides of a parallelogram are \[2 \hat{ i } - 4 \hat{ j } + 5 \hat{ k } \text{ and } \hat{ i } - 2 \hat{ j } - 3\hat{ k } .\]\ Find the unit vector parallel to one of its diagonals. Also, find its area.
If \[\left| \vec{a} \times \vec{b} \right|^2 + \left| \vec{a} \cdot \vec{b} \right|^2 = 400\] and \[\left| \vec{a} \right| = 5,\] then write the value of \[\left| \vec{b} \right| .\]
Define vector product of two vectors.
Write a unit vector perpendicular to \[\hat{ i } + \hat{ j } \text{ and } \hat{ j } + \hat{ k } .\]
If \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 = 144\] and \[\left| \vec{a} \right| = 4,\] find \[\left| \vec{b} \right|\] .
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors such that \[\vec{a} \times \vec{b}\] is also a unit vector, find the angle between \[\vec{a} \text{ and } \vec{b}\] .
Write the angle between the vectors \[\vec{a} \times \vec{b}\] and \[\vec{b} \times \vec{a}\] .
Vectors \[\vec{a} \text{ and } \vec{b}\] are inclined at angle θ = 120°. If \[\left| \vec{a} \right| = 1, \left| \vec{b} \right| = 2,\] then \[\left[ \left( \vec{a} + 3 \vec{b} \right) \times \left( 3 \vec{a} - \vec{b} \right) \right]^2\] is equal to
A unit vector perpendicular to both \[\hat{ i } + \hat{ j } \text{ and } \hat{ j } + \hat{ k } \] is
If \[\vec{a} = 2 \hat{ i } - 3 \hat{ j } - \hat{ k } \text{ and } \vec{b} = \hat{ i } + 4 \hat{ j } - 2 \hat{ k
} , \text{ then } \vec{a} \times \vec{b}\] is
If θ is the angle between any two vectors `bara` and `barb` and `|bara · barb| = |bara xx barb|` then θ is equal to ______.
Find a unit vector perpendicular to both the vectors `veca and vecb` , where `veca = hat i - 7 hatj +7hatk` and `vecb = 3hati - 2hatj + 2hatk` .
Let `veca` and `vecb` be two unit vectors and θ is the angle between them, Then `veca + vecb` is a unit vector if-
Let `hata` and `hatb` be two unit vectors such that the angle between them is `π/4`. If θ is the angle between the vectors `(hata + hatb)` and `(hata xx 2hatb + 2(hata xx hatb))`, then the value of 164 cos2θ is equal to ______.
If the angle between `veca` and `vecb` is `π/3` and `|veca xx vecb| = 3sqrt(3)`, then the value of `veca.vecb` is ______.
If `veca` and `vecb` are two non-zero vectors such that `|veca xx vecb| = veca.vecb`, find the angle between `veca` and `vecb`.