मराठी

Find the area of the parallelogram whose diagonals are i^-3j^+k^ and i^+j^+k^. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the parallelogram whose diagonals are `hati - 3hatj + hatk` and `hati + hatj + hatk`.

बेरीज

उत्तर

Diagonals of a parallelogram

`vecd_1 = hati - 3hatj + hatk`,

`vecd_2 = hati + hatj + hatk`

Now `vecd_1 xx vecd_2 = |(hati, hatj, hatk),(1, -3, 1),(1, 1, 1)|`

= `(-3 - 1)hati - (1 - 1)hatj + (1 + 3)hatk`

= `-4hati - 0hatj + 4hatk`

∵ Area of a parallelogram

= `1/2 |vecd_1 xx vecd_2|`

= `1/2 sqrt((-4)^2 + 0 + 4^2)`

= `1/2 xx sqrt(16 + 16)`

= `1/2 xx sqrt(32)`

= `1/2 xx 4sqrt(2)`

= `2sqrt(2)` sq.units

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Official

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If a unit vector `veca` makes an angles `pi/3` with `hati, pi/4` with `hatj` and an acute angle θ with `hatk`, then find θ and, hence the compounds of `veca`.


Given that `veca.vecb = 0` and `veca xx vecb = 0` What can you conclude about the vectors `veca and vecb`?


If either `veca = vec0`  or `vecb = vec0`, then `veca xxvecb = vec0`. Is the converse true? Justify your answer with an example.


Find the area of the parallelogram whose adjacent sides are determined by the vector `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.


Area of a rectangle having vertices A, B, C, and D with position vectors `-hati + 1/2 hatj + 4hatk, hati + 1/2 hatj + 4hatk, and -hati - 1/2j + 4hatk,` respectively is ______.


If \[\vec{a} = 2 \hat{ i } + \hat{ k }  , \vec{b} = \hat { i }  + \hat{ j } + \hat{ k }  ,\]  find the magnitude of  \[\vec{a} \times \vec{b} .\]

 

 


Find the area of the parallelogram determined by the vector \[\hat{ i }  - 3 \hat{ j } + \hat{ k }  \text{ and }  \hat{ i }  + \hat{ j } + \hat{ k }  .\]

 


\[\text{ If }  \left| \vec{a} \right| = 13, \left| \vec{b} \right| = 5 \text{ and }  \vec{a} . \vec{b} = 60, \text{ then find }  \left| \vec{a} \times \vec{b} \right| .\]

 


if \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 7 \text{ and }  \vec{a} \times \vec{b} = 3 \hat{ i }  + 2 \hat{ j } + 6 \hat{ k } ,\]  find the angle between  \[\vec{a} \text{ and }  \vec{b} .\]

 


Find the area of the triangle formed by OAB when \[\vec{OA} = \hat{ i } + 2 \hat{ j }  + 3 \hat{ k }  , \vec{OB} = - 3 \hat{ i }  - 2 \hat{ j }+ \hat{ k }  .\]


The two adjacent sides of a parallelogram are \[2 \hat{ i  } - 4 \hat{ j }  + 5 \hat{ k }  \text{ and }  \hat{ i } - 2 \hat{ j }  - 3\hat{ k }  .\]\  Find the unit vector parallel to one of its diagonals. Also, find its area. 

 
 

If  \[\left| \vec{a} \times \vec{b} \right|^2 + \left| \vec{a} \cdot \vec{b} \right|^2 = 400\] and  \[\left| \vec{a} \right| = 5,\]  then write the value of \[\left| \vec{b} \right| .\]

 

Define vector product of two vectors.

 

\[\text{ If }  \left| \vec{a} \right| = 10, \left| \vec{b} \right| = 2 \text{ and }  \left| \vec{a} \times \vec{b} \right| = 16, \text{ find }  \vec{a} . \vec{b} .\]

 


Write a unit vector perpendicular to \[\hat{ i } + \hat{ j }  \text{ and }  \hat{ j }  + \hat{ k } .\]

 


If \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 = 144\]  and \[\left| \vec{a} \right| = 4,\]  find \[\left| \vec{b} \right|\] . 

 
 

 


If \[\vec{a} \text{ and }  \vec{b}\] are unit vectors such that \[\vec{a} \times \vec{b}\] is also a unit vector, find the angle between \[\vec{a} \text{ and } \vec{b}\] .

 
 

 


Write the angle between the vectors  \[\vec{a} \times \vec{b}\]  and  \[\vec{b} \times \vec{a}\] .

 

 


Vectors \[\vec{a} \text{ and }  \vec{b}\] are inclined at angle θ = 120°. If \[\left| \vec{a} \right| = 1, \left| \vec{b} \right| = 2,\] then  \[\left[ \left( \vec{a} + 3 \vec{b} \right) \times \left( 3 \vec{a} - \vec{b} \right) \right]^2\]  is equal to 

 
  

A unit vector perpendicular to both \[\hat{ i }  + \hat{ j } \text{ and }  \hat{ j } + \hat{ k } \] is

 

If \[\vec{a} = 2 \hat{ i }  - 3 \hat{ j }  - \hat{ k }  \text{ and }  \vec{b} = \hat{ i } + 4 \hat{ j }  - 2 \hat{ k 
} , \text{ then } \vec{a} \times \vec{b}\]  is


If θ is the angle between any two vectors `bara` and `barb` and `|bara · barb| = |bara xx barb|` then θ is equal to ______.


Find a unit vector perpendicular to both the vectors `veca and vecb` , where `veca = hat i - 7 hatj +7hatk`  and  `vecb = 3hati - 2hatj + 2hatk` . 


Let `veca` and `vecb` be two unit vectors and θ is the angle between them, Then `veca + vecb` is a unit vector if-


Let `hata` and `hatb` be two unit vectors such that the angle between them is `π/4`. If θ is the angle between the vectors `(hata + hatb)` and `(hata xx 2hatb + 2(hata xx hatb))`, then the value of 164 cos2θ is equal to ______.


If the angle between `veca` and `vecb` is `π/3` and `|veca xx vecb| = 3sqrt(3)`, then the value of `veca.vecb` is ______.


If `veca` and `vecb` are two non-zero vectors such that `|veca xx vecb| = veca.vecb`, find the angle between `veca` and `vecb`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×