मराठी

The distance of the point 2i^+j^-k^ from the plane r→.(i^-2j^+4k^) = 9 will be ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The distance of the point `2hati + hatj - hatk` from the plane `vecr.(hati - 2hatj + 4hatk)` = 9 will be ______.

पर्याय

  • 13

  • `13/sqrt(21)`

  • 21

  • `21/sqrt(13)`

MCQ
रिकाम्या जागा भरा

उत्तर

The distance of the point `2hati + hatj - hatk` from the plane `vecr.(hati - 2hatj + 4hatk)` = 9 will be `underlinebb(13/sqrt(21))`.

Explanation:

Plane `vecr.(hati - 2hatj + 4hatk)` = 9  ...(1)

and Point `veca = 2hati + hatj - hatk`

Here `vecn = hati - 2hatj + 4hatk`

`|vecn| = sqrt(1^2 + (-2)^2 + 4^2)`

= `sqrt(1 + 4 + 16)`

= `sqrt(21)`

Then distance of point `veca` from plane (1)

= `(|veca.vecn - 9|)/|vecn|`

= `(|(2)(1) + (1)(-2) + (-1)(4) - 9|)/sqrt(21)`

= `(|2 - 2 - 4 - 9|)/sqrt(21)`

= `13/sqrt(21)` units.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Official

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the equation of the planes parallel to the plane x + 2y+ 2z + 8 =0 which are at the distance of 2  units from the point (1,1, 2)


In the given cases, find the distance of each of the given points from the corresponding given plane.

Point                 Plane

(2, 3, – 5)           x + 2y – 2z = 9


Find the distance of the point (−1, −5, −­10) from the point of intersection of the line `vecr = 2hati -hatj + 2hatk + lambda(3hati + 4hatj + 2hatk)` and the plane `vecr.(hati -hatj + hatk) = 5`.


Distance between the two planes: 2x + 3y + 4z = 4 and 4x + 6y + 8z = 12 is

(A) 2 units

(B) 4 units

(C) 8 units

(D)`2/sqrt29 "units"`


Find the distance of the point  \[2 \hat{i} - \hat{j} - 4 \hat{k}\]  from the plane  \[\vec{r} \cdot \left( 3 \hat{i}  - 4 \hat{j}  + 12 \hat{k}  \right) - 9 = 0 .\]


Show that the points \[\hat{i}  - \hat{j}  + 3 \hat{k}  \text{ and }  3 \hat{i}  + 3 \hat{j}  + 3 \hat{k} \] are equidistant from the plane \[\vec{r} \cdot \left( 5 \hat{i}  + 2 \hat{j}  - 7 \hat{k}  \right) + 9 = 0 .\]

  

Find the distance of the point (2, 3, −5) from the plane x + 2y − 2z − 9 = 0.

 

Find the distance of the point (2, 3, 5) from the xy - plane.

 

Find the distance of the point (1, -2, 4) from plane passing throuhg the point (1, 2, 2) and perpendicular of the planes x - y + 2z = 3 and 2x - 2y + z + 12 = 0 


Find the equation of the plane mid-parallel to the planes 2x − 2y + z + 3 = 0 and 2x − 2y + z + 9 = 0.

 

The distance between the planes 2x + 2y − z + 2 = 0 and 4x + 4y − 2z + 5 = 0 is 

 

 

 

 
 

The image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0 is


 The distance between the point (3, 4, 5) and the point where the line \[\frac{x - 3}{1} = \frac{y - 4}{2} = \frac{z - 5}{2}\] meets the plane x + y + z = 17 is

If a plane passes through the point (1, 1, 1) and is perpendicular to the line \[\frac{x - 1}{3} = \frac{y - 1}{0} = \frac{z - 1}{4}\] then its perpendicular distance from the origin is ______.


Find the distance of the point (1, 1 –1) from the plane 3x +4y – 12z + 20 = 0.


If the foot of perpendicular drawn from the origin to the plane is (3, 2, 1), then the equation of plane is ____________.


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/ϒ` = 3


Find the distance of a point (2, 4, –1) from the line `(x + 5)/1 = (y + 3)/4 = (z - 6)/(-9)`


Distance of the point (α, β, γ) from y-axis is ____________.


Which one of the following statements is correct for a moving body?


S and S are the focii of the ellipse `x^2/a^2 + y^2/b^2 - 1` whose one of the ends of the minor axis is the point B If ∠SBS' = 90°, then the eccentricity of the ellipse is


The fuel charges for running a train are proportional to the square of the speed generated in miles per hour and costs ₹ 48 per hour at 16 miles per hour. The most economical speed if the fixed charges i.e. salaries etc. amount to ₹ 300 per hour is


Find the coordinates of points on line `x/1 = (y - 1)/2 = (z + 1)/2` which are at a distance of `sqrt(11)` units from origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×