Advertisements
Advertisements
प्रश्न
If \[\vec{a} = 2 \hat{ i } - 3 \hat{ j } - \hat{ k } \text{ and } \vec{b} = \hat{ i } + 4 \hat{ j } - 2 \hat{ k
} , \text{ then } \vec{a} \times \vec{b}\] is
पर्याय
\[10 \hat{ i } + 2 \hat{ j } + 11 \hat{ k } \]
\[10 \hat{ i } + 3 \hat{ j } + 11 \hat{ k } \]
\[10 \hat{ i } - 3 \hat{ j } + 11 \hat{ k } \]
\[10 \hat{ i } - 2 \hat{ j } - 10 \hat{ k } \]
उत्तर
\[\vec{a} \times \vec{b} = \begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ 2 & - 3 & - 1 \\ 1 & 4 & - 2\end{vmatrix}\]
\[ = 10 \hat{ i } + 3 \hat{ j } + 11 \hat{ k } \]
APPEARS IN
संबंधित प्रश्न
Find λ and μ if `(2hati + 6hatj + 27hatk) xx (hati + lambdahatj + muhatk) = vec0`.
Find a unit vector perpendicular to the plane containing the vectors \[\vec{a} = 2 \hat{ i } + \hat{ j } + \hat{ k } \text{ and } \vec{b} = \hat{ i } + 2 \hat{ j } + \hat{ k } .\]
Find a vector of magnitude 49, which is perpendicular to both the vectors \[2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k } \text{ and } 3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } .\]
Find a vector whose length is 3 and which is perpendicular to the vector \[\vec{a} = 3 \hat{ i } + \hat{ j } - 4 \hat{ k } \text{ and } \vec{b} = 6 \hat{ i } + 5 \hat{ j } - 2 \hat{ k } .\]
Find the area of the parallelogram determined by the vector \[2 \hat{ i } + \hat{ j } + 3 \hat{ k } \text{ and } \hat{ i } - \hat{ j } \] .
Find the area of the parallelogram determined by the vector \[\hat{ i } - 3 \hat{ j } + \hat{ k } \text{ and } \hat{ i } + \hat{ j } + \hat{ k } .\]
if \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 7 \text{ and } \vec{a} \times \vec{b} = 3 \hat{ i } + 2 \hat{ j } + 6 \hat{ k } ,\] find the angle between \[\vec{a} \text{ and } \vec{b} .\]
if \[\vec{a} = \hat{ i }- 2\hat{ j } + 3 \hat{ k } , \text{ and } \vec{b} = 2 \hat{ i } + 3 \hat{ j } - 5 \hat{ k } ,\] then find \[\vec{a} \times \vec{b} .\] Verify th at \[\vec{a} \text{ and } \vec{a} \times \vec{b}\] are perpendicular to each other.
If \[\vec{p} \text{ and } \vec{q}\] are unit vectors forming an angle of 30°; find the area of the parallelogram having \[\vec{a} = \vec{p} + 2 \vec{q} \text{ and } \vec{b} = 2 \vec{p} + \vec{q}\] as its diagonals.
Find a unit vector perpendicular to each of the vectors \[\vec{a} + \vec{b} \text{ and } \vec{a} - \vec{b} , \text{ where } \vec{a} = 3 \hat{ i } + 2 \hat{ j } + 2 \hat{ k } \text{ and } \vec{b} = \hat{ i } + 2 \hat{ j } - 2 \hat{ k } .\]
If \[\vec{a} = 2 \hat{ i } - 3 \hat{ j } + \hat{ k } , \vec{b} = -\hat{ i } + \hat{ k } , \vec{c} = 2 \hat{ j } - \hat{ k } \] are three vectors, find the area of the parallelogram having diagonals \[\left( \vec{a} + \vec{b} \right)\] and \[\left( \vec{b} + \vec{c} \right)\] .
If \[\vec{a} = a_1 \hat{ i } + a_2 \hat{ j } + a_3 \hat{ k } , \vec{b} = b_1 \hat{ i } + b_2 \hat{ j } + b_3 \hat{ k } \text{ and } \vec{c} = c_1 \hat{ i } + c_2 \hat{ j } + c_3 \hat{ k } ,\]then verify that \[\vec{a} \times \left( \vec{b} + \vec{c} \right) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} .\]
Using vectors, find the area of the triangle with vertice A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5) .
Write the value of \[\hat{ i } . \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } . \left( \hat{ k } \times \hat{ i } \right) + \hat{ k } . \left( \hat{ i } \times \hat{ j } \right) .\]
If \[\vec{a} \text{ and } \vec{b}\] are two vectors of magnitudes 3 and \[\frac{\sqrt{2}}{3}\] espectively such that \[\vec{a} \times \vec{b}\] is a unit vector. Write the angle between \[\vec{a} \text{ and } \vec{b} .\]
If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} \times \vec{b} \right| = \sqrt{3}\text{ and } \vec{a} . \vec{b} = 1,\] find the angle between.
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors such that \[\vec{a} \times \vec{b}\] is also a unit vector, find the angle between \[\vec{a} \text{ and } \vec{b}\] .
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then write the value of \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 .\]
Vectors \[\vec{a} \text{ and } \vec{b}\] \[\left| \vec{a} \right| = \sqrt{3}, \left| \vec{b} \right| = \frac{2}{3}\text{ and } \left( \vec{a} \times \vec{b} \right)\] is a unit vector. Write the angle between \[\vec{a} \text{ and } \vec{b}\] .
Find λ, if \[\left( 2 \hat{ i } + 6 \hat{ j } + 14 \hat{ k } \right) \times \left( \hat{ i } - \lambda \hat{ j } + 7 \hat{ k } \right) = \vec{0} .\]
Write the value of the area of the parallelogram determined by the vectors \[2 \hat{ i } \text{ and } 3 \hat{ j } .\]
If \[\vec{a}\] is any vector, then \[\left( \vec{a} \times \hat{ i } \right)^2 + \left( \vec{a} \times \hat{ j } \right)^2 + \left( \vec{a} \times \hat{ k } \right)^2 =\]
If \[\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}\] and \[\vec{a} \times \vec{b} = \vec{a} \times \vec{c,} \vec{a} \neq 0,\] then
Vectors \[\vec{a} \text{ and } \vec{b}\] are inclined at angle θ = 120°. If \[\left| \vec{a} \right| = 1, \left| \vec{b} \right| = 2,\] then \[\left[ \left( \vec{a} + 3 \vec{b} \right) \times \left( 3 \vec{a} - \vec{b} \right) \right]^2\] is equal to
If \[\hat{ i } , \hat{ j } , \hat{ k } \] are unit vectors, then
Find the area of the triangle with vertices A(1, l, 2), (2, 3, 5) and (1, 5, 5).
Let `veca` and `vecb` be two unit vectors and θ is the angle between them, Then `veca + vecb` is a unit vector if-
Let `veca = hati + hatj, vecb = hati - hatj` and `vecc = hati + hatj + hatk`. If `hatn` is a unit vector such that `veca.hatn` = 0 and `vecb.hatn` = 0, then find `|vecc.hatn|`.
If `veca` and `vecb` are unit vectors inclined at an angle 30° to each other, then find the area of the parallelogram with `(veca + 3vecb)` and `(3veca + vecb)` as adjacent sides.
If the vector `vecb = 3hatj + 4hatk` is written as the sum of a vector `vec(b_1)`, parallel to `veca = hati + hatj` and a vector `vec(b_2)`, perpendicular to `veca`, then `vec(b_1) xx vec(b_2)` is equal to ______.
If the angle between `veca` and `vecb` is `π/3` and `|veca xx vecb| = 3sqrt(3)`, then the value of `veca.vecb` is ______.
Find the area of a parallelogram whose adjacent sides are determined by the vectors `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.
Find the area of the parallelogram whose diagonals are `hati - 3hatj + hatk` and `hati + hatj + hatk`.