मराठी

If → a = a 1 ^ I + a 2 ^ J + a 3 ^ K , → B = B 1 ^ I + B 2 ^ J + B 3 ^ K and → C = C 1 ^ I + C 2 ^ J + C 3 ^ K , Then Verify that → a × ( → B + → C ) = → a × → B + → a × → C . - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\vec{a} = a_1 \hat{ i } + a_2 \hat{ j } + a_3 \hat{ k }  , \vec{b} = b_1 \hat{ i }  + b_2 \hat{ j }  + b_3 \hat{ k }  \text{ and }  \vec{c} = c_1 \hat{ i } + c_2 \hat{ j }  + c_3 \hat{ k }  ,\]then verify that \[\vec{a} \times \left(  \vec{b} + \vec{c} \right) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} .\]

बेरीज

उत्तर

\[\text{ Given } : \]

\[ \vec{a} = a_1 \hat{ i }  + a_2 \hat{ j }  + a_3 \hat{ k }  \]

\[ \vec{b} = b_1 \hat{ i }  + b_2 \hat{ j }  + b_3 \hat{ k }  \]

\[ \vec{c} = c_1 \hat{ i } +  c_2\hat{  j }  + c_3 \hat{ k }  \]

\[ \vec{b} + \vec{c} = \left( b_1 + c_1 \right) \hat{ i }  + \left( b_2 + c_2 \right) \hat{ j }  + \left( b_3 + c_3 \right) \hat{ k } \]

\[ \therefore \vec{a} \times \left( \vec{b} + c \right) = \begin{vmatrix}\hat{ i }  & \hat{ j }  & \hat{ k } \\ a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3\end{vmatrix}\]

\[ = \left( a_2 b_3 + a_2 c_3 - a_3 b_2 - a_3 c_2 \right) \hat{ i }  - \left( a_1 b_3 + a_1 c_3 - a_3 b_1 - a_3 c_1 \right) \hat{ j }  + \left( a_1 b_2 + a_1 c_2 - a_2 b_1 - a_2 c_1 \right) \hat{ k }  . . . (1)\]

\[\text{ Now } , \]

\[ \vec{a} \times \vec{b} = \begin{vmatrix}\hat{ i }  & \hat{ j }  & \hat{ k }  \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3\end{vmatrix}\]

\[ = \left( a_2 b_3 - a_3 b_2 \right) \hat{ i } - \left( a_1 b_3 - a_3 b_1 \right) \hat{ j }  + \left( a_1 b_2 - a_2 b_1 \right) \hat{ k }  \]

\[ \vec{a} \times \vec{c} = \begin{vmatrix}\hat{ i }  & \hat{ j }  & \hat{  k }  \\ a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3\end{vmatrix}\]

\[ = \left( a_2 c_3 - a_3 c_2 \right) \hat{ i }  - \left( a_1 c_3 - a_3 c_1 \right) \hat{ j }  + \left( a_1 c_2 - a_2 c_1 \right) \hat{ k }  \]

\[ \vec{a} \times \vec{b} + \vec{b} \times \vec{c} = \left( a_2 b_3 + a_2 c_3 - a_3 b_2 - a_3 c_2 \right) \hat{ i }  - \left( a_1 b_3 + a_1 c_3 - a_3 b_1 - a_3 c_1 \right) \hat{ j }  + \left( a_1 b_2 + a_1 c_2 - a_2 b_1 - a_2 c_1 \right) \hat{ k }  . . . (2)\]

\[ \text{ From (1) and (2), we get } \]

\[ \vec{a} \times \left( \vec{b} + c \right) = \vec{a} \times \vec{b} + \vec{b} \times \vec{c}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 25: Vector or Cross Product - Exercise 25.1 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 25 Vector or Cross Product
Exercise 25.1 | Q 33 | पृष्ठ ३१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Given that `veca.vecb = 0` and `veca xx vecb = 0` What can you conclude about the vectors `veca and vecb`?


Find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5).


If θ is the angle between two vectors `hati - 2hatj + 3hatk and 3hati - 2hatj + hatk` find `sin theta`


If A, B, C are three non- collinear points with position vectors `vec a, vec b, vec c`, respectively, then show that the length of the perpendicular from Con AB is `|(vec a xx vec b)+(vec b xx vec c) + (vec b xx  vec a)|/|(vec b -  vec a)|`


 Find a unit vector perpendicular to both the vectors  \[4 \hat{ i } - \hat{ j }  + 3 \hat{ k } \text{ and }  - 2 \hat{ i  } + \hat{ j }  - 2 \hat{ k }  .\]

 


Find the magnitude of \[\vec{a} = \left( 3 \hat{ k }  + 4 \hat{ j } \right) \times \left( \hat{ i }  + \hat{ j }  - \hat{ k }  \right) .\]

 

Find a vector whose length is 3 and which is perpendicular to the vector \[\vec{a} = 3 \hat{ i }  + \hat{ j  } - 4 \hat{ k }  \text{ and }  \vec{b} = 6 \hat{ i }  + 5 \hat{ j }  - 2 \hat{ k } .\]


Find the area of the parallelogram determined by the vector \[2 \hat{ i } + \hat{ j } + 3 \hat{ k }  \text{ and }  \hat{ i }  - \hat{ j } \] .

 


if \[\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq 0,\]  then  show that \[\vec{a} + \vec{c} = m \vec{b} ,\]  where m is any scalar.

 
 

 


What inference can you draw if \[\vec{a} \times \vec{b} = \vec{0} \text{ and }  \vec{a} \cdot \vec{b} = 0 .\]

 

Find a unit vector perpendicular to the plane ABC, where the coordinates of AB and Care A (3, −1, 2), B (1, −1, −3) and C (4, −3, 1).


If  \[\vec{p} \text{ and }  \vec{q}\] are unit vectors forming an angle of 30°; find the area of the parallelogram having \[\vec{a} = \vec{p} + 2 \vec{q} \text{ and }  \vec{b} = 2 \vec{p} + \vec{q}\] as its diagonals.

 
 

 


Define  \[\vec{a} \times \vec{b}\] and prove that \[\left| \vec{a} \times \vec{b} \right| = \left( \vec{a} . \vec{b} \right)\] tan θ, where θ is the angle between \[\vec{a} \text{ and }  \vec{b}\] .

 
 

 


Find a unit vector perpendicular to each of the vectors \[\vec{a} + \vec{b} \text{ and }  \vec{a} - \vec{b} , \text{ where }  \vec{a} = 3 \hat{ i }  + 2 \hat{ j }  + 2 \hat{ k }  \text{ and }  \vec{b} = \hat{ i } + 2 \hat{ j }  - 2 \hat{ k }  .\]

 

The two adjacent sides of a parallelogram are \[2 \hat{ i  } - 4 \hat{ j }  + 5 \hat{ k }  \text{ and }  \hat{ i } - 2 \hat{ j }  - 3\hat{ k }  .\]\  Find the unit vector parallel to one of its diagonals. Also, find its area. 

 
 

Using vectors, find the area of the triangle with vertice A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1)  .    


Define vector product of two vectors.

 

Write the value of  \[\hat{ i } . \left( \hat{ j } \times \hat{ k }  \right) + \hat{ j }  . \left( \hat{ k } \times \hat{ i }  \right) + \hat{ k }  . \left( \hat{ j }  \times \hat{ i }  \right) .\]

 


Write the value of  \[\hat{ i } . \left( \hat{ j } \times \hat{ k }  \right) + \hat{ j }  . \left( \hat{ k } \times \hat{ i }  \right) + \hat{ k }  . \left( \hat{ i }  \times \hat{ j }  \right) .\]

 


\[\text{ If }  \left| \vec{a} \right| = 10, \left| \vec{b} \right| = 2 \text{ and }  \left| \vec{a} \times \vec{b} \right| = 16, \text{ find }  \vec{a} . \vec{b} .\]

 


For any two vectors \[\vec{a} \text{ and } \vec{b} , \text{ find } \left( \vec{a} \times \vec{b} \right) . \vec{b} .\]

 

If  \[\vec{c}\] is a unit vector perpendicular to the vectors \[\vec{a} \text{ and } \vec{b} ,\]  write another unit vector perpendicular to \[\vec{a} \text{ and }  \vec{b} .\]

 
 

 


Find λ, if \[\left( 2 \hat{ i }  + 6 \hat{ j }  + 14 \hat{ k }  \right) \times \left( \hat{ i }  - \lambda \hat{ j } + 7 \hat{ k }  \right) = \vec{0} .\]

 

Write the value of \[\left( \hat{ i }  \times \hat{ j }  \right) \cdot \hat{ k }  + \left( \hat{ j } + \hat{ k }  \right) \cdot \hat{ j } \]

 

Write the number of vectors of unit length perpendicular to both the vectors \[\vec{a} = 2 \hat{ i } + \hat{ j }  + 2 \hat{ k }  \text{ and }  \vec{b} = \hat{ j }  + \hat{ k } \] .

 

Write the angle between the vectors  \[\vec{a} \times \vec{b}\]  and  \[\vec{b} \times \vec{a}\] .

 

 


If \[\vec{a}\] is any vector, then \[\left( \vec{a} \times \hat{ i }  \right)^2 + \left( \vec{a} \times \hat{ j } \right)^2 + \left( \vec{a} \times \hat{ k }  \right)^2 =\]


The vector \[\vec{b} = 3 \hat { i }+ 4 \hat {k }\] is to be written as the sum of a vector \[\vec{\alpha}\] parallel to \[\vec{a} = \hat {i} + \hat {j}\] and a vector \[\vec{\beta}\] perpendicular to \[\vec{a}\]. Then \[\vec{\alpha} =\]


(a)  If `veca  =  hati - 2j + 3veck , vecb = 2hati + 3hatj - 5hatk,` prove that `veca and vecaxxvecb`  are perpendicular.


The value of λ for which the two vectors `2hati - hatj + 2hatk` and `3hati + λhatj + hatk` are perpendicular is ______.


Find the area of the triangle with vertices A(1, l, 2), (2, 3, 5) and (1, 5, 5).


Let `veca, vecb, vecc` be three vectors mutually perpendicular to each other and have same magnitude. If a vector `vecr` satisfies. `veca xx {(vecr - vecb) xx veca} + vecb xx {(vecr - vecc) xx vecb} + vecc xx {(vecr - veca) xx vecc} = vec0`, then `vecr` is equal to ______.


If the vector `vecb = 3hatj + 4hatk` is written as the sum of a vector `vec(b_1)`, parallel to `veca = hati + hatj` and a vector `vec(b_2)`, perpendicular to `veca`, then `vec(b_1) xx vec(b_2)` is equal to ______.


If the angle between `veca` and `vecb` is `π/3` and `|veca xx vecb| = 3sqrt(3)`, then the value of `veca.vecb` is ______.


If `veca` and `vecb` are two non-zero vectors such that `|veca xx vecb| = veca.vecb`, find the angle between `veca` and `vecb`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×