English

If → a = a 1 ^ I + a 2 ^ J + a 3 ^ K , → B = B 1 ^ I + B 2 ^ J + B 3 ^ K and → C = C 1 ^ I + C 2 ^ J + C 3 ^ K , Then Verify that → a × ( → B + → C ) = → a × → B + → a × → C . - Mathematics

Advertisements
Advertisements

Question

If \[\vec{a} = a_1 \hat{ i } + a_2 \hat{ j } + a_3 \hat{ k }  , \vec{b} = b_1 \hat{ i }  + b_2 \hat{ j }  + b_3 \hat{ k }  \text{ and }  \vec{c} = c_1 \hat{ i } + c_2 \hat{ j }  + c_3 \hat{ k }  ,\]then verify that \[\vec{a} \times \left(  \vec{b} + \vec{c} \right) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} .\]

Sum

Solution

\[\text{ Given } : \]

\[ \vec{a} = a_1 \hat{ i }  + a_2 \hat{ j }  + a_3 \hat{ k }  \]

\[ \vec{b} = b_1 \hat{ i }  + b_2 \hat{ j }  + b_3 \hat{ k }  \]

\[ \vec{c} = c_1 \hat{ i } +  c_2\hat{  j }  + c_3 \hat{ k }  \]

\[ \vec{b} + \vec{c} = \left( b_1 + c_1 \right) \hat{ i }  + \left( b_2 + c_2 \right) \hat{ j }  + \left( b_3 + c_3 \right) \hat{ k } \]

\[ \therefore \vec{a} \times \left( \vec{b} + c \right) = \begin{vmatrix}\hat{ i }  & \hat{ j }  & \hat{ k } \\ a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3\end{vmatrix}\]

\[ = \left( a_2 b_3 + a_2 c_3 - a_3 b_2 - a_3 c_2 \right) \hat{ i }  - \left( a_1 b_3 + a_1 c_3 - a_3 b_1 - a_3 c_1 \right) \hat{ j }  + \left( a_1 b_2 + a_1 c_2 - a_2 b_1 - a_2 c_1 \right) \hat{ k }  . . . (1)\]

\[\text{ Now } , \]

\[ \vec{a} \times \vec{b} = \begin{vmatrix}\hat{ i }  & \hat{ j }  & \hat{ k }  \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3\end{vmatrix}\]

\[ = \left( a_2 b_3 - a_3 b_2 \right) \hat{ i } - \left( a_1 b_3 - a_3 b_1 \right) \hat{ j }  + \left( a_1 b_2 - a_2 b_1 \right) \hat{ k }  \]

\[ \vec{a} \times \vec{c} = \begin{vmatrix}\hat{ i }  & \hat{ j }  & \hat{  k }  \\ a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3\end{vmatrix}\]

\[ = \left( a_2 c_3 - a_3 c_2 \right) \hat{ i }  - \left( a_1 c_3 - a_3 c_1 \right) \hat{ j }  + \left( a_1 c_2 - a_2 c_1 \right) \hat{ k }  \]

\[ \vec{a} \times \vec{b} + \vec{b} \times \vec{c} = \left( a_2 b_3 + a_2 c_3 - a_3 b_2 - a_3 c_2 \right) \hat{ i }  - \left( a_1 b_3 + a_1 c_3 - a_3 b_1 - a_3 c_1 \right) \hat{ j }  + \left( a_1 b_2 + a_1 c_2 - a_2 b_1 - a_2 c_1 \right) \hat{ k }  . . . (2)\]

\[ \text{ From (1) and (2), we get } \]

\[ \vec{a} \times \left( \vec{b} + c \right) = \vec{a} \times \vec{b} + \vec{b} \times \vec{c}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 25: Vector or Cross Product - Exercise 25.1 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 25 Vector or Cross Product
Exercise 25.1 | Q 33 | Page 31

RELATED QUESTIONS

Find a unit vector perpendicular to each of the vector  `veca  + vecb` and `veca - vecb`, where `veca = 3hati + 2hatj + 2hatk` and `vecb = hati + 2hatj  - 2hatk`.


Show that `(veca - vecb) xx (veca + vecb) = 2(veca xx vecb)`.


Find λ and μ if  `(2hati + 6hatj + 27hatk) xx (hati + lambdahatj + muhatk) = vec0`.


Given that `veca.vecb = 0` and `veca xx vecb = 0` What can you conclude about the vectors `veca and vecb`?


If either `veca = vec0`  or `vecb = vec0`, then `veca xxvecb = vec0`. Is the converse true? Justify your answer with an example.


Find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5).


Find the area of the parallelogram whose adjacent sides are determined by the vector `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.


Area of a rectangle having vertices A, B, C, and D with position vectors `-hati + 1/2 hatj + 4hatk, hati + 1/2 hatj + 4hatk, and -hati - 1/2j + 4hatk,` respectively is ______.


Let `veca = 4hati + 5hatj - hatk`, `vecb  = hati - 4hatj + 5hatk` and `vecc = 3hati + hatj - hatk`. Find a vector `vecd` which is perpendicular to both `vecc` and `vecb and vecd.veca = 21`


Find a unit vector perpendicular to both the vectors \[\vec{a} + \vec{b} \text { and } \vec{a} - \vec{b}\] ,where \[\vec{a} = \hat{i}+ \hat{j} + \hat{k} , \vec{b} =\hat {i} + 2 \hat{j} + 3 \hat{k}\].


\[\text{ If } \vec{a} = \hat { i }  + 3 \hat { j }  - 2 \hat { k } \text{ and }  \vec{b} = - \hat { i }  + 3 \hat { k }   , \text{ find }  \left| \vec{a} \times \vec{b} \right| .\]


Find the magnitude of \[\vec{a} = \left( 3 \hat{ k }  + 4 \hat{ j } \right) \times \left( \hat{ i }  + \hat{ j }  - \hat{ k }  \right) .\]

 

\[\text{ If }  \vec{a} = 4 \hat{ i }  + 3 \hat{ j }  + \hat{ k }  \text{ and }  \vec{b} = \hat{ i }  - 2 \hat{ k } ,\text{  then find }  \left| 2 \hat{ b } \times \vec{a} \right| .\]

 


Find the area of the parallelogram determined by the vector \[2 \hat{ i }  \text{ and }  3 \hat{ j } \] .

 


Find the area of the parallelogram determined by the vector \[3 \hat{ i } + \hat{ j }  - 2 \hat{ k } \text{  and }  \hat{ i }  - 3 \hat{ j }  + 4 \hat{ k } \] .

 


Find the area of the parallelogram whose diagonals are  \[3 \hat{ i }  + 4 \hat{ j }  \text{ and } \hat{ i } + \hat{ j } + \hat{ k }\]

 


If \[\vec{a} = 2 \hat{ i }  + 5 \hat{ j }  - 7 \hat{ k }  , \vec{b} = - 3 \hat{ i } + 4 \hat{ j }  + \hat{ k }  \text{ and } \vec{c} = \hat{ i }  - 2 \hat{ j }  - 3 \hat{ k }  ,\] compute \[\left( \vec{a} \times \vec{b} \right) \times \vec{c} \text{ and }  \vec{a} \times \left( \vec{b} \times \vec{c} \right)\]  and verify that these are not equal.

 
 
 

if \[\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq 0,\]  then  show that \[\vec{a} + \vec{c} = m \vec{b} ,\]  where m is any scalar.

 
 

 


What inference can you draw if \[\vec{a} \times \vec{b} = \vec{0} \text{ and }  \vec{a} \cdot \vec{b} = 0 .\]

 

Find a unit vector perpendicular to the plane ABC, where the coordinates of AB and Care A (3, −1, 2), B (1, −1, −3) and C (4, −3, 1).


if \[\vec{a} = \hat{ i }- 2\hat{ j }  + 3 \hat{ k }  , \text{ and }  \vec{b} = 2 \hat{ i }  + 3 \hat{ j }  - 5 \hat{ k }  ,\]  then find \[\vec{a} \times \vec{b} .\]  Verify th at \[\vec{a} \text{ and }  \vec{a} \times \vec{b}\] are perpendicular to each other.

 
 
 

 


For any two vectors \[\vec{a} \text{ and }  \vec{b}\] , prove that \[\left| \vec{a} \times \vec{b} \right|^2 = \begin{vmatrix}\vec{a} . \vec{a} & & \vec{a} . \vec{b} \\ \vec{b} . \vec{a} & & \vec{b} . \vec{b}\end{vmatrix}\]

 
 

Using vectors find the area of the triangle with vertices, A (2, 3, 5), B (3, 5, 8) and C (2, 7, 8).


The two adjacent sides of a parallelogram are \[2 \hat{ i  } - 4 \hat{ j }  + 5 \hat{ k }  \text{ and }  \hat{ i } - 2 \hat{ j }  - 3\hat{ k }  .\]\  Find the unit vector parallel to one of its diagonals. Also, find its area. 

 
 

Write the expression for the area of the parallelogram having \[\vec{a} \text{ and } \vec{b}\] as its diagonals.

 
 

For any three vectors \[\vec{a,} \vec{b} \text{ and }  \vec{c}\] write the value of \[\vec{a} \times \left( \vec{b} + \vec{c} \right) + \vec{b} \times \left( \vec{c} + \vec{a} \right) + \vec{c} \times \left( \vec{a} + \vec{b} \right) .\]

 
 

Write the value of \[\hat{ i }  \times \left(\hat{  j }  \times \hat{ k }  \right) .\]

 

If \[\vec{a} = 3 \hat{ i }  - \hat{ j }  + 2 \hat{ k } \] and  \[\vec{b} = 2 \hat { i }  + \hat{ j }  - \hat{ k} ,\]  then find \[\left( \vec{a} \times \vec{b} \right) \vec{a} .\]

 


Write a unit vector perpendicular to \[\hat{ i } + \hat{ j }  \text{ and }  \hat{ j }  + \hat{ k } .\]

 


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then write the value of \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 .\]

 

 


If \[\vec{a}\] is a unit vector such that \[\vec{a} \times \hat{ i }  = \hat{ j }  , \text{ find }  \vec{a} . \hat{ i } \] .

 

If  \[\vec{c}\] is a unit vector perpendicular to the vectors \[\vec{a} \text{ and } \vec{b} ,\]  write another unit vector perpendicular to \[\vec{a} \text{ and }  \vec{b} .\]

 
 

 


Vectors  \[\vec{a} \text{ and }  \vec{b}\] \[\left| \vec{a} \right| = \sqrt{3}, \left| \vec{b} \right| = \frac{2}{3}\text{ and } \left( \vec{a} \times \vec{b} \right)\]  is a unit vector. Write the angle between \[\vec{a} \text{ and } \vec{b}\] .

 


Write the value of the area of the parallelogram determined by the vectors   \[2 \hat{ i }  \text{ and } 3 \hat{ j }  .\]

 

If \[\vec{a,} \vec{b}\] represent the diagonals of a rhombus, then


If \[\vec{a} = 2 \hat{ i }  - 3 \hat{ j }  - \hat{ k }  \text{ and }  \vec{b} = \hat{ i } + 4 \hat{ j }  - 2 \hat{ k 
} , \text{ then } \vec{a} \times \vec{b}\]  is


If θ is the angle between any two vectors `bara` and `barb` and `|bara · barb| = |bara xx barb|` then θ is equal to ______.


Let `veca = hati + hatj, vecb = hati - hatj` and `vecc = hati + hatj + hatk`. If `hatn` is a unit vector such that `veca.hatn` = 0 and `vecb.hatn` = 0, then find `|vecc.hatn|`.


If the angle between `veca` and `vecb` is `π/3` and `|veca xx vecb| = 3sqrt(3)`, then the value of `veca.vecb` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×