English

For any three vectors → a , → b and → c write the value of → a × ( → b + → c ) + → b × ( → c + → a ) + → c × ( → a + → b ) . - Mathematics

Advertisements
Advertisements

Question

For any three vectors \[\vec{a,} \vec{b} \text{ and }  \vec{c}\] write the value of \[\vec{a} \times \left( \vec{b} + \vec{c} \right) + \vec{b} \times \left( \vec{c} + \vec{a} \right) + \vec{c} \times \left( \vec{a} + \vec{b} \right) .\]

 
 
Short Note

Solution

\[\vec{a} \times \left( \vec{b} + \vec{c} \right) + \vec{b} \times \left( \vec{c} + \vec{a} \right) + \vec{c} \times \left( \vec{a} + \vec{b} \right)\]
\[ = \left( \vec{a} \times \vec{b} \right) + \left( \vec{a} \times \vec{c} \right) + \left( \vec{b} \times \vec{c} \right) + \left( \vec{b} \times \vec{a} \right) + \left( \vec{c} \times \vec{a} \right) + \left( \vec{c} \times \vec{b} \right)\]
\[ = \left( \vec{a} \times \vec{b} \right) + \left( \vec{a} \times \vec{c} \right) + \left( \vec{b} \times \vec{c} \right) - \left( \vec{a} \times \vec{b} \right) - \left( \vec{a} \times \vec{c} \right) - \left( \vec{b} \times \vec{c} \right)\]
\[ = \vec{0}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 25: Vector or Cross Product - very short answers [Page 33]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 25 Vector or Cross Product
very short answers | Q 12 | Page 33

RELATED QUESTIONS

Area of a rectangle having vertices A, B, C, and D with position vectors `-hati + 1/2 hatj + 4hatk, hati + 1/2 hatj + 4hatk, and -hati - 1/2j + 4hatk,` respectively is ______.


Find a unit vector perpendicular to both the vectors \[\vec{a} + \vec{b} \text { and } \vec{a} - \vec{b}\] ,where \[\vec{a} = \hat{i}+ \hat{j} + \hat{k} , \vec{b} =\hat {i} + 2 \hat{j} + 3 \hat{k}\].


Find the magnitude of \[\vec{a} = \left( 3 \hat{ k }  + 4 \hat{ j } \right) \times \left( \hat{ i }  + \hat{ j }  - \hat{ k }  \right) .\]

 

\[\text{ If }  \vec{a} = 4 \hat{ i }  + 3 \hat{ j }  + \hat{ k }  \text{ and }  \vec{b} = \hat{ i }  - 2 \hat{ k } ,\text{  then find }  \left| 2 \hat{ b } \times \vec{a} \right| .\]

 


Find the area of the parallelogram determined by the vector \[2 \hat{ i } + \hat{ j } + 3 \hat{ k }  \text{ and }  \hat{ i }  - \hat{ j } \] .

 


Find the area of the parallelogram determined by the vector \[3 \hat{ i } + \hat{ j }  - 2 \hat{ k } \text{  and }  \hat{ i }  - 3 \hat{ j }  + 4 \hat{ k } \] .

 


If \[\vec{a} = 2 \hat{ i }  + 5 \hat{ j }  - 7 \hat{ k }  , \vec{b} = - 3 \hat{ i } + 4 \hat{ j }  + \hat{ k }  \text{ and } \vec{c} = \hat{ i }  - 2 \hat{ j }  - 3 \hat{ k }  ,\] compute \[\left( \vec{a} \times \vec{b} \right) \times \vec{c} \text{ and }  \vec{a} \times \left( \vec{b} \times \vec{c} \right)\]  and verify that these are not equal.

 
 
 

\[\text{ If }  \left| \vec{a} \right| = 2, \left| \vec{b} \right| = 5 \text{ and }  \left| \vec{a} \times \vec{b} \right| = 8, \text { find }  \vec{a} \cdot \vec{b} .\]

 


Given \[\vec{a} = \frac{1}{7}\left( 2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k }  \right), \vec{b} = \frac{1}{7}\left( 3 \hat{ i } - 6 \hat{ j }  + 2 \hat{ k }  \right), \vec{c} = \frac{1}{7}\left( 6 \hat{ i } + 2 \hat{ j }  - 3 \hat{ k }\right), \hat{ i } , \hat{ j }  , \hat{ k } \] being a right handed orthogonal system of unit vectors in space, show that \[\vec{a} , \vec{b} , \vec{c}\] is also another system.

 
 

Find the angle between two vectors \[\vec{a} \text{ and }  \vec{b}\] , if \[\left| \vec{a} \times \vec{b} \right| = \vec{a} \cdot \vec{b} .\]

 

if \[\vec{a} = \hat{ i }- 2\hat{ j }  + 3 \hat{ k }  , \text{ and }  \vec{b} = 2 \hat{ i }  + 3 \hat{ j }  - 5 \hat{ k }  ,\]  then find \[\vec{a} \times \vec{b} .\]  Verify th at \[\vec{a} \text{ and }  \vec{a} \times \vec{b}\] are perpendicular to each other.

 
 
 

 


If  \[\vec{p} \text{ and }  \vec{q}\] are unit vectors forming an angle of 30°; find the area of the parallelogram having \[\vec{a} = \vec{p} + 2 \vec{q} \text{ and }  \vec{b} = 2 \vec{p} + \vec{q}\] as its diagonals.

 
 

 


For any two vectors \[\vec{a} \text{ and }  \vec{b}\] , prove that \[\left| \vec{a} \times \vec{b} \right|^2 = \begin{vmatrix}\vec{a} . \vec{a} & & \vec{a} . \vec{b} \\ \vec{b} . \vec{a} & & \vec{b} . \vec{b}\end{vmatrix}\]

 
 

\[\text{ If }  \left| \vec{a} \right| = \sqrt{26}, \left| \vec{b} \right| = 7 \text{ and }  \left| \vec{a} \times \vec{b} \right| = 35, \text{ find }  \vec{a} . \vec{b} .\]

 


Find a unit vector perpendicular to each of the vectors \[\vec{a} + \vec{b} \text{ and }  \vec{a} - \vec{b} , \text{ where }  \vec{a} = 3 \hat{ i }  + 2 \hat{ j }  + 2 \hat{ k }  \text{ and }  \vec{b} = \hat{ i } + 2 \hat{ j }  - 2 \hat{ k }  .\]

 

Using vectors find the area of the triangle with vertices, A (2, 3, 5), B (3, 5, 8) and C (2, 7, 8).


Using vectors, find the area of the triangle with vertice A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1)  .    


Find all vectors of magnitude \[10\sqrt{3}\] that are perpendicular to the plane of \[\hat{ i }  + 2 \hat{ j }  + \hat{ k } \] and \[- \hat { i }  + 3 \hat{ j }  + 4 \hat{ k } \] .

 

Write the value of \[\hat{ i }  × \left( \hat{ j } + \hat{ k }  \right) + \hat{ j }   ×  \left( \hat{ k } + \hat{ i }  \right) + \hat{ k }  ×   \left( \hat{ i }  + \hat{ j }  \right) .\]

 

Write the expression for the area of the parallelogram having \[\vec{a} \text{ and } \vec{b}\] as its diagonals.

 
 

If   \[\vec{a} \text{ and }  \vec{b}\] are two vectors such that \[\left| \vec{a} \times \vec{b} \right| = \sqrt{3}\text{ and }  \vec{a} . \vec{b} = 1,\]  find the angle between.

 
 

 


Write the value of the area of the parallelogram determined by the vectors   \[2 \hat{ i }  \text{ and } 3 \hat{ j }  .\]

 

Write the value of \[\left( \hat{ i }  \times \hat{ j }  \right) \cdot \hat{ k }  + \left( \hat{ j } + \hat{ k }  \right) \cdot \hat{ j } \]

 

If \[\vec{a}\] is any vector, then \[\left( \vec{a} \times \hat{ i }  \right)^2 + \left( \vec{a} \times \hat{ j } \right)^2 + \left( \vec{a} \times \hat{ k }  \right)^2 =\]


The unit vector perpendicular to the plane passing through points \[P\left( \hat{ i } - \hat{ j }  + 2 \hat{ k }  \right), Q\left( 2 \hat{ i } - \hat{ k } \right) \text{ and }  R\left( 2 \hat{ j }  + \hat{ k }  \right)\]  is 

 

Vectors \[\vec{a} \text{ and }  \vec{b}\] are inclined at angle θ = 120°. If \[\left| \vec{a} \right| = 1, \left| \vec{b} \right| = 2,\] then  \[\left[ \left( \vec{a} + 3 \vec{b} \right) \times \left( 3 \vec{a} - \vec{b} \right) \right]^2\]  is equal to 

 
  

(a)  If `veca  =  hati - 2j + 3veck , vecb = 2hati + 3hatj - 5hatk,` prove that `veca and vecaxxvecb`  are perpendicular.


What is the sum of vector `veca = hati - 2hati + hatk, vecb = - 2hati + 4hatj + 5hatk` and `vecc = hati - 6hatj - 7hatk`


Find the area of the triangle with vertices A(1, l, 2), (2, 3, 5) and (1, 5, 5).


Let `hata` and `hatb` be two unit vectors such that the angle between them is `π/4`. If θ is the angle between the vectors `(hata + hatb)` and `(hata xx 2hatb + 2(hata xx hatb))`, then the value of 164 cos2θ is equal to ______.


If the angle between `veca` and `vecb` is `π/3` and `|veca xx vecb| = 3sqrt(3)`, then the value of `veca.vecb` is ______.


Find the area of a parallelogram whose adjacent sides are determined by the vectors `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.


If `veca xx vecb = veca xx vecc` where `veca, vecb` and `vecc` are non-zero vectors, then prove that either `vecb = vecc` or `veca` and `(vecb - vecc)` are parallel.


If `veca` and `vecb` are two non-zero vectors such that `|veca xx vecb| = veca.vecb`, find the angle between `veca` and `vecb`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×