Advertisements
Advertisements
Question
Find the area of the triangle with vertices A(1, l, 2), (2, 3, 5) and (1, 5, 5).
Options
`sqrt(61)`
`sqrt(61)`
`1/2sqrt(61)`
61
MCQ
Solution
`1/2sqrt(61)`
Explanation:
The position vectors of vertices of ΔABC are (1, l, 2) (1, 3, 5) and C(1, 5, 5)
∴ `vec(AB) = vec(OB) - vec(OA)`
= `(2hati + 3hatj + 5hatk) + (hati + hatj + 2hatk)`
= `hati + 2hatj + 3hatk`
`vec(AC) = vec(OC) - vec(OA)`
= `(hati + 5hatj + 5hatk) - (hati + hatj + 2hatk)`
= `0hati + 4hatj + 3hatk`
= `4hatj + 3hatk`
`vec(AB) xx vec(AC) = |(hati, hatj, hatk),(1, 2, 3),(0, 4, 3)| = (6 - 12)hati + (3)hatj + 4hatk`
`|vec(AB) xx vec(AC)| = |-6hati - 3hatj + 4hatk|`
= `sqrt((-6)^2 + (-3)^2 + 4^2)`
= `sqrt(36 + 9 + 16)`
= `sqrt(61)`
Area of the ΔABC = `1/2|vec(AB) xx vec(AC)| = 1/2 sqrt(61)`
shaalaa.com
Is there an error in this question or solution?