English

For any two vectors → a and → b , find ( → a × → b ) . → b - Mathematics

Advertisements
Advertisements

Question

For any two vectors \[\vec{a} \text{ and } \vec{b} , \text{ find } \left( \vec{a} \times \vec{b} \right) . \vec{b} .\]

 
Short Note

Solution

\[\text{ Let } :\]
\[ \vec{a} = a_1 \hat{ i }  + a_2 \hat{ j }  + a_3 \hat{ k }  \]
\[ \vec{b} = b_1 \hat{ i }  + b_2 \hat{ j }  + b_3 \hat{ k } \]
\[ \vec{a} \times \vec{b} = \begin{vmatrix}\hat{ i }  & \hat{ j }  & \hat{  k  }  \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3\end{vmatrix}\]
\[ = \hat{ i }  \left( a_2 b_3 - a_3 b_2 \right) - \hat{ j }  \left( a_1 b_3 - a_3 b_1 \right) + \hat{ k }  \left( a_1 b_2 - a_2 b_1 \right)\]
\[\left( \vec{a} \times \vec{b} \right) . \vec{b} \]
\[ = \left[ \hat{ i }  \left( a_2 b_3 - a_3 b_2 \right) - \hat{ j }  \left( a_1 b_3 - a_3 b_1 \right) + \hat{ k } \left( a_1 b_2 - a_2 b_1 \right) \right] . \left( b_1 \hat{ i }  + b_2 \hat{ j }  + b_3 \hat{ k }  \right)\]
\[ = b_1 \left( a_2 b_3 - a_3 b_2 \right) - b_2 \left( a_1 b_3 - a_3 b_1 \right) + b_3 \left( a_1 b_2 - a_2 b_1 \right)\]
\[ = a_2 b_1 b_3 - a_3 b_1 b_2 - a_1 b_2 b_3 + a_3 b_1 b_2 + a_1 b_2 b_3 - a_2 b_1 b_3 \]
\[ = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 25: Vector or Cross Product - very short answers [Page 33]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 25 Vector or Cross Product
very short answers | Q 13 | Page 33

RELATED QUESTIONS

Find `|veca × vecb|`, if `veca = hati - 7hatj + 7hatk` and `vecb = 3hati - 2hatj + 2hatk`.


Let the vectors `veca, vecb, vecc` given as `a_1hati + a_2hatj + a_3hatk, b_1hati + b_2hatj + b_3hatk, c_1hati + c_2hatj + c_3hatk` Then show that = `veca xx (vecb+ vecc) = veca xx vecb + veca xx vecc.`


Find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5).


Area of a rectangle having vertices A, B, C, and D with position vectors `-hati + 1/2 hatj + 4hatk, hati + 1/2 hatj + 4hatk, and -hati - 1/2j + 4hatk,` respectively is ______.


If A, B, C are three non- collinear points with position vectors `vec a, vec b, vec c`, respectively, then show that the length of the perpendicular from Con AB is `|(vec a xx vec b)+(vec b xx vec c) + (vec b xx  vec a)|/|(vec b -  vec a)|`


\[\text{ If }  \vec{ a } = 3 \hat{ i }- \hat{ j }  - 2 \hat{ k } \text{  and } \vec{b} = 2 \hat{ i }  + 3 \hat{ j } + \hat{ k }  , \text{ find }  \left( \vec{a} + 2 \vec{b} \right) \times \left( 2 \vec{a} - \vec{b} \right) .\]

 


Find the area of the parallelogram whose diagonals are  \[4 \hat{ i } - \hat{ j }  - 3 \hat{ k }  \text{ and }  - 2 \hat{ j }  + \hat{ j }  - 2 \hat{ k } \]

 


Find the angle between two vectors \[\vec{a} \text{ and }  \vec{b}\] , if \[\left| \vec{a} \times \vec{b} \right| = \vec{a} \cdot \vec{b} .\]

 

What inference can you draw if \[\vec{a} \times \vec{b} = \vec{0} \text{ and }  \vec{a} \cdot \vec{b} = 0 .\]

 

If \[\vec{a,} \vec{b,} \vec{c}\] are three unit vectors such that \[\vec{a} \times \vec{b} = \vec{c} , \vec{b} \times \vec{c} = \vec{a,} \vec{c} \times \vec{a} = \vec{b} .\]  Show that \[\vec{a,} \vec{b,} \vec{c}\] form an orthonormal right handed triad of unit vectors.

 
 
 

 


if \[\vec{a} = \hat{ i }- 2\hat{ j }  + 3 \hat{ k }  , \text{ and }  \vec{b} = 2 \hat{ i }  + 3 \hat{ j }  - 5 \hat{ k }  ,\]  then find \[\vec{a} \times \vec{b} .\]  Verify th at \[\vec{a} \text{ and }  \vec{a} \times \vec{b}\] are perpendicular to each other.

 
 
 

 


\[\text{ If }  \left| \vec{a} \right| = \sqrt{26}, \left| \vec{b} \right| = 7 \text{ and }  \left| \vec{a} \times \vec{b} \right| = 35, \text{ find }  \vec{a} . \vec{b} .\]

 


Let \[\vec{a} = \hat{ i } + 4 \hat{ j }  + 2 \hat{ k } , \vec{b} = 3 \hat{ i }- 2 \hat{ j } + 7 \hat{ k }  \text{ and } \vec{c} = 2 \hat{ i } - \hat{ j }  + 4 \hat{ k }  .\]  Find a vector \[\vec{d}\] which is perpendicular to both \[\vec{a} \text{ and } \vec{d}\] \[\text{ and }  \vec{c} \cdot \vec{d} = 15 .\]

 
 

 


The two adjacent sides of a parallelogram are \[2 \hat{ i  } - 4 \hat{ j }  + 5 \hat{ k }  \text{ and }  \hat{ i } - 2 \hat{ j }  - 3\hat{ k }  .\]\  Find the unit vector parallel to one of its diagonals. Also, find its area. 

 
 

Find all vectors of magnitude \[10\sqrt{3}\] that are perpendicular to the plane of \[\hat{ i }  + 2 \hat{ j }  + \hat{ k } \] and \[- \hat { i }  + 3 \hat{ j }  + 4 \hat{ k } \] .

 

Write the expression for the area of the parallelogram having \[\vec{a} \text{ and } \vec{b}\] as its diagonals.

 
 

If \[\vec{a} \text{ and }  \vec{b}\] are two vectors of magnitudes 3 and \[\frac{\sqrt{2}}{3}\]  espectively such that \[\vec{a} \times \vec{b}\] is a unit vector. Write the angle between \[\vec{a} \text{ and }  \vec{b} .\]

 
 
 

 


For any three vectors \[\vec{a,} \vec{b} \text{ and }  \vec{c}\] write the value of \[\vec{a} \times \left( \vec{b} + \vec{c} \right) + \vec{b} \times \left( \vec{c} + \vec{a} \right) + \vec{c} \times \left( \vec{a} + \vec{b} \right) .\]

 
 

Write a unit vector perpendicular to \[\hat{ i } + \hat{ j }  \text{ and }  \hat{ j }  + \hat{ k } .\]

 


If \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 = 144\]  and \[\left| \vec{a} \right| = 4,\]  find \[\left| \vec{b} \right|\] . 

 
 

 


If \[\vec{r} = x \hat{ i } + y \hat{ j }  + z \hat{ k }  ,\] then write the value of \[\left| \vec{r} \times \hat{ i }  \right|^2 .\]

 

 


If \[\vec{a} \text{ and }  \vec{b}\] are unit vectors such that \[\vec{a} \times \vec{b}\] is also a unit vector, find the angle between \[\vec{a} \text{ and } \vec{b}\] .

 
 

 


If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} . \vec{b} \right| = \left| \vec{a} \times \vec{b} \right|,\]  write the angle between \[\vec{a} \text{ and } \vec{b} .\]

 
 

 


Find λ, if \[\left( 2 \hat{ i }  + 6 \hat{ j }  + 14 \hat{ k }  \right) \times \left( \hat{ i }  - \lambda \hat{ j } + 7 \hat{ k }  \right) = \vec{0} .\]

 

Write the value of the area of the parallelogram determined by the vectors   \[2 \hat{ i }  \text{ and } 3 \hat{ j }  .\]

 

Find a vector of magnitude \[\sqrt{171}\]  which is perpendicular to both of the vectors \[\vec{a} = \hat{ i } + 2 \hat{ j }  - 3 \hat{ k } \]  and  \[\vec{a} = \hat{ i } + 2 \hat{ j }  - 3 \hat{ k } \] . 

 
 

If \[\vec{a}\] is any vector, then \[\left( \vec{a} \times \hat{ i }  \right)^2 + \left( \vec{a} \times \hat{ j } \right)^2 + \left( \vec{a} \times \hat{ k }  \right)^2 =\]


If \[\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}\] and \[\vec{a} \times \vec{b} = \vec{a} \times \vec{c,} \vec{a} \neq 0,\] then


If θ is the angle between any two vectors `bara` and `barb` and `|bara · barb| = |bara xx barb|` then θ is equal to ______.


If `veca` and `vecb` are unit vectors inclined at an angle 30° to each other, then find the area of the parallelogram with `(veca + 3vecb)` and `(3veca + vecb)` as adjacent sides.


If the angle between `veca` and `vecb` is `π/3` and `|veca xx vecb| = 3sqrt(3)`, then the value of `veca.vecb` is ______.


If `|veca xx vecb| = sqrt(3)` and `veca.vecb` = – 3, then angle between `veca` and `vecb` is ______.


Find the area of a parallelogram whose adjacent sides are determined by the vectors `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.


Find the area of the parallelogram whose diagonals are `hati - 3hatj + hatk` and `hati + hatj + hatk`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×