Advertisements
Advertisements
Question
If \[\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}\] and \[\vec{a} \times \vec{b} = \vec{a} \times \vec{c,} \vec{a} \neq 0,\] then
Options
\[\vec{b} = \vec{c}\]
\[\vec{b} = \vec{0}\]
\[\vec{b} + \vec{c} = \vec{0}\]
none of these
Solution
\[\vec{b} = \vec{c}\]
\[\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c} \]
\[ \Rightarrow \vec{a}^{} \cdot \vec{b} - \vec{a} \cdot \vec{c} = 0\]
\[ \Rightarrow \vec{a .} \left( \vec{b} - \vec{c} \right) = 0 \]
\[\text { Let } \theta \text { be the angle between} \ \vec{ a } \text { and }\left( \vec{b} - \vec{c} \right) \]
\[\left| \vec{a} \right|\left| \left( \vec{b} - \vec{c} \right) \right|\cos \theta . . . (1)\]
\[\text { and } \vec{a} \times \vec{b} = \vec{a} \times \vec{c} \]
\[ \Rightarrow \vec{a} \times \vec{b} - \vec{a} \times \vec{c} = 0\]
\[ \Rightarrow \vec{a} \times \left( \vec{b} - \vec{c} \right) = 0\]
\[\text { Then } , \left| \vec{a} \right| \left| \left( \vec{b} - \vec{c} \right) \right| \sin \theta = 0 . . . (2)\]
\[\text { Here, it is given that} \ \vec{a} \neq 0\]
\[\text { Therefore, for eq (1) and eq (2) to be 0 }\]
We have ,
\[\left| \left( \vec{b} - \vec{c} \right) \right| \cos \theta = 0 \]
\[\text { For } \left| \left( \vec{b} - \vec{c} \right) \right| \cos \theta = 0 , \text { one of } \left| \left( \vec{b} - \vec{c} \right) \right| \text { or }\cos \theta \text { must be } 0\]
Case 1:
\[\text { Let } \cos \theta = 0\]
\[ \Rightarrow \theta = 90^\circ \]
\[ \Rightarrow \sin \theta = 1\]
\[\text { & if } \left| \left( \vec{b} - \vec{c} \right) \right| \sin \theta = 0 \text { and } \sin \theta = 1 \]
\[\text { Then } \left| \left( \vec{b} - \vec{c} \right) \right| = 0\]
\[ \Rightarrow \vec{b} = \vec{c} \]
Case 2:
\[\text { Let } \left| \left( \vec{b} - \vec{c} \right) \right| = 0\]
\[ \Rightarrow \vec{b} = \vec{c} \]
\[\text { Hence }, \vec{b} = \vec{c} \]
APPEARS IN
RELATED QUESTIONS
If `veca = 2hati + 2hatj + 3hatk, vecb = -veci + 2hatj + hatk and vecc = 3hati + hatj` are such that `veca + lambdavecb` is perpendicular to `vecc`, then find the value of λ.
If a unit vector `veca` makes an angles `pi/3` with `hati, pi/4` with `hatj` and an acute angle θ with `hatk`, then find θ and, hence the compounds of `veca`.
Let the vectors `veca, vecb, vecc` given as `a_1hati + a_2hatj + a_3hatk, b_1hati + b_2hatj + b_3hatk, c_1hati + c_2hatj + c_3hatk` Then show that = `veca xx (vecb+ vecc) = veca xx vecb + veca xx vecc.`
If either `veca = vec0` or `vecb = vec0`, then `veca xxvecb = vec0`. Is the converse true? Justify your answer with an example.
If θ is the angle between two vectors `hati - 2hatj + 3hatk and 3hati - 2hatj + hatk` find `sin theta`
Find a unit vector perpendicular to both the vectors \[\vec{a} + \vec{b} \text { and } \vec{a} - \vec{b}\] ,where \[\vec{a} = \hat{i}+ \hat{j} + \hat{k} , \vec{b} =\hat {i} + 2 \hat{j} + 3 \hat{k}\].
If \[\vec{a} = 2 \hat{ i } + \hat{ k } , \vec{b} = \hat { i } + \hat{ j } + \hat{ k } ,\] find the magnitude of \[\vec{a} \times \vec{b} .\]
Find a unit vector perpendicular to both the vectors \[4 \hat{ i } - \hat{ j } + 3 \hat{ k } \text{ and } - 2 \hat{ i } + \hat{ j } - 2 \hat{ k } .\]
Find a unit vector perpendicular to the plane containing the vectors \[\vec{a} = 2 \hat{ i } + \hat{ j } + \hat{ k } \text{ and } \vec{b} = \hat{ i } + 2 \hat{ j } + \hat{ k } .\]
Find the magnitude of \[\vec{a} = \left( 3 \hat{ k } + 4 \hat{ j } \right) \times \left( \hat{ i } + \hat{ j } - \hat{ k } \right) .\]
Find a vector of magnitude 49, which is perpendicular to both the vectors \[2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k } \text{ and } 3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } .\]
If \[\vec{a} = 2 \hat{ i } + 5 \hat{ j } - 7 \hat{ k } , \vec{b} = - 3 \hat{ i } + 4 \hat{ j } + \hat{ k } \text{ and } \vec{c} = \hat{ i } - 2 \hat{ j } - 3 \hat{ k } ,\] compute \[\left( \vec{a} \times \vec{b} \right) \times \vec{c} \text{ and } \vec{a} \times \left( \vec{b} \times \vec{c} \right)\] and verify that these are not equal.
if \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 7 \text{ and } \vec{a} \times \vec{b} = 3 \hat{ i } + 2 \hat{ j } + 6 \hat{ k } ,\] find the angle between \[\vec{a} \text{ and } \vec{b} .\]
What inference can you draw if \[\vec{a} \times \vec{b} = \vec{0} \text{ and } \vec{a} \cdot \vec{b} = 0 .\]
Find a unit vector perpendicular to each of the vectors \[\vec{a} + \vec{b} \text{ and } \vec{a} - \vec{b} , \text{ where } \vec{a} = 3 \hat{ i } + 2 \hat{ j } + 2 \hat{ k } \text{ and } \vec{b} = \hat{ i } + 2 \hat{ j } - 2 \hat{ k } .\]
Using vectors, find the area of the triangle with vertice A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1) .
If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} \times \vec{b} \right| = \sqrt{3}\text{ and } \vec{a} . \vec{b} = 1,\] find the angle between.
For any three vectors \[\vec{a,} \vec{b} \text{ and } \vec{c}\] write the value of \[\vec{a} \times \left( \vec{b} + \vec{c} \right) + \vec{b} \times \left( \vec{c} + \vec{a} \right) + \vec{c} \times \left( \vec{a} + \vec{b} \right) .\]
Write a unit vector perpendicular to \[\hat{ i } + \hat{ j } \text{ and } \hat{ j } + \hat{ k } .\]
If \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 = 144\] and \[\left| \vec{a} \right| = 4,\] find \[\left| \vec{b} \right|\] .
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then write the value of \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 .\]
If \[\vec{c}\] is a unit vector perpendicular to the vectors \[\vec{a} \text{ and } \vec{b} ,\] write another unit vector perpendicular to \[\vec{a} \text{ and } \vec{b} .\]
Write the number of vectors of unit length perpendicular to both the vectors \[\vec{a} = 2 \hat{ i } + \hat{ j } + 2 \hat{ k } \text{ and } \vec{b} = \hat{ j } + \hat{ k } \] .
If \[\vec{a}\] is any vector, then \[\left( \vec{a} \times \hat{ i } \right)^2 + \left( \vec{a} \times \hat{ j } \right)^2 + \left( \vec{a} \times \hat{ k } \right)^2 =\]
If \[\hat{ i } , \hat{ j } , \hat{ k } \] are unit vectors, then
If θ is the angle between the vectors \[2 \hat{ i } - 2 \hat{ j} + 4 \hat{ k } \text{ and } 3 \hat{ i } + \hat { j } + 2 \hat{ k } ,\] then sin θ =
The value of \[\hat{ i } \cdot \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } \cdot \left( \hat{ i } \times \hat{ k } \right) + \hat{ k } \cdot \left( \hat{ i } \times \hat{ j } \right),\] is
Find a unit vector perpendicular to both the vectors `veca and vecb` , where `veca = hat i - 7 hatj +7hatk` and `vecb = 3hati - 2hatj + 2hatk` .
If `veca` and `vecb` are unit vectors inclined at an angle 30° to each other, then find the area of the parallelogram with `(veca + 3vecb)` and `(3veca + vecb)` as adjacent sides.
The two adjacent sides of a parallelogram are represented by vectors `2hati - 4hatj + 5hatk` and `hati - 2hatj - 3hatk`. Find the unit vector parallel to one of its diagonals, Also, find the area of the parallelogram.
Let `hata` and `hatb` be two unit vectors such that the angle between them is `π/4`. If θ is the angle between the vectors `(hata + hatb)` and `(hata xx 2hatb + 2(hata xx hatb))`, then the value of 164 cos2θ is equal to ______.
If the angle between `veca` and `vecb` is `π/3` and `|veca xx vecb| = 3sqrt(3)`, then the value of `veca.vecb` is ______.
Find the area of a parallelogram whose adjacent sides are determined by the vectors `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.
If `veca = hati + hatj + hatk` and `vecb = hati + 2hatj + 3hatk` then find a unit vector perpendicular to both `veca + vecb` and `veca - vecb`.