English

If anda→=2i^+2j^+3k^, b→=-i→+2j^+k^andc→=3i^+j^ are such that a→+λb→ is perpendicular to c→, then find the value of λ. - Mathematics

Advertisements
Advertisements

Question

If `veca = 2hati + 2hatj + 3hatk,  vecb = -veci + 2hatj + hatk and vecc = 3hati + hatj` are such that `veca + lambdavecb`  is perpendicular to `vecc`, then find the value of λ.

Sum

Solution

The given vectors are `veca = 2hati + 2hatj + 3hatk, vecb = -hati + 2hatj + hatk`, and `vecc = 3hati + hatj`.

Now, `veca + λvecb = (2hati + 2hatj + 3hatk) + λ(-hati + 2hatj + hatk)`

= `(2- λ)hati + (2 + 2λ)hatj + (3 + λ)hatk`

If `(veca + λvecb)` is perpendicular to `vecc`, then `(veca + λvecb).vecc` = 0

⇒ `[(2 - λ)hati + (2 + 2λ)hatj + (3 + λ)hatk]*(3hati + hatj)` = 0

⇒ (2 – λ).3 + (2 + 2λ).1 + (3 + λ).0 = 0

⇒ 6 – 3λ + 2 + 2λ = 0

⇒ –λ + 8 = 0

⇒ λ = 8

Hence, the required value of λ is 8.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Vector Algebra - Exercise 10.3 [Page 448]

RELATED QUESTIONS

If a unit vector `veca` makes an angles `pi/3` with `hati, pi/4` with `hatj` and an acute angle θ with `hatk`, then find θ and, hence the compounds of `veca`.


Show that `(veca - vecb) xx (veca + vecb) = 2(veca xx vecb)`.


Given that `veca.vecb = 0` and `veca xx vecb = 0` What can you conclude about the vectors `veca and vecb`?


Let the vectors `veca, vecb, vecc` given as `a_1hati + a_2hatj + a_3hatk, b_1hati + b_2hatj + b_3hatk, c_1hati + c_2hatj + c_3hatk` Then show that = `veca xx (vecb+ vecc) = veca xx vecb + veca xx vecc.`


Area of a rectangle having vertices A, B, C, and D with position vectors `-hati + 1/2 hatj + 4hatk, hati + 1/2 hatj + 4hatk, and -hati - 1/2j + 4hatk,` respectively is ______.


Let `veca = 4hati + 5hatj - hatk`, `vecb  = hati - 4hatj + 5hatk` and `vecc = 3hati + hatj - hatk`. Find a vector `vecd` which is perpendicular to both `vecc` and `vecb and vecd.veca = 21`


\[\text{ If } \vec{a} = \hat { i }  + 3 \hat { j }  - 2 \hat { k } \text{ and }  \vec{b} = - \hat { i }  + 3 \hat { k }   , \text{ find }  \left| \vec{a} \times \vec{b} \right| .\]


Find a vector of magnitude 49, which is perpendicular to both the vectors  \[2 \hat{ i }   + 3 \hat{ j }  + 6 \hat{ k }  \text{ and } 3 \hat{ i }  - 6 \hat{ j }  + 2 \hat{ k }  .\]

 


Find the area of the parallelogram determined by the vector \[\hat{ i }  - 3 \hat{ j } + \hat{ k }  \text{ and }  \hat{ i }  + \hat{ j } + \hat{ k }  .\]

 


Find the area of the parallelogram whose diagonals are  \[2 \hat{ i }+ \hat{ k } \text{ and } \hat{ i } + \hat{ j } + \hat{ k } \]

 


Find the area of the parallelogram whose diagonals are \[2 \hat{ i }  + 3 \hat{ j } + 6 \hat{ k } \text{ and }  3 \hat{ i }  - 6 \hat{ j }  + 2 \hat{ k } \]

 


If \[\vec{a} = 2 \hat{ i }  + 5 \hat{ j }  - 7 \hat{ k }  , \vec{b} = - 3 \hat{ i } + 4 \hat{ j }  + \hat{ k }  \text{ and } \vec{c} = \hat{ i }  - 2 \hat{ j }  - 3 \hat{ k }  ,\] compute \[\left( \vec{a} \times \vec{b} \right) \times \vec{c} \text{ and }  \vec{a} \times \left( \vec{b} \times \vec{c} \right)\]  and verify that these are not equal.

 
 
 

Given \[\vec{a} = \frac{1}{7}\left( 2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k }  \right), \vec{b} = \frac{1}{7}\left( 3 \hat{ i } - 6 \hat{ j }  + 2 \hat{ k }  \right), \vec{c} = \frac{1}{7}\left( 6 \hat{ i } + 2 \hat{ j }  - 3 \hat{ k }\right), \hat{ i } , \hat{ j }  , \hat{ k } \] being a right handed orthogonal system of unit vectors in space, show that \[\vec{a} , \vec{b} , \vec{c}\] is also another system.

 
 

Find the angle between two vectors \[\vec{a} \text{ and }  \vec{b}\] , if \[\left| \vec{a} \times \vec{b} \right| = \vec{a} \cdot \vec{b} .\]

 

What inference can you draw if \[\vec{a} \times \vec{b} = \vec{0} \text{ and }  \vec{a} \cdot \vec{b} = 0 .\]

 

If abc are the lengths of sides, BCCA and AB of a triangle ABC, prove that \[\vec{BC} + \vec{CA} + \vec{AB} = \vec{0}\]  and deduce that \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} .\]

 
 

If  \[\vec{p} \text{ and }  \vec{q}\] are unit vectors forming an angle of 30°; find the area of the parallelogram having \[\vec{a} = \vec{p} + 2 \vec{q} \text{ and }  \vec{b} = 2 \vec{p} + \vec{q}\] as its diagonals.

 
 

 


If \[\vec{a} = 2 \hat{ i } - 3 \hat{ j  } + \hat{ k } , \vec{b} = -\hat{  i }  + \hat{ k } , \vec{c} = 2 \hat{ j }  - \hat{ k } \]  are three vectors, find the area of the parallelogram having diagonals \[\left( \vec{a} + \vec{b} \right)\]  and \[\left( \vec{b} + \vec{c} \right)\] .

 
 

Find all vectors of magnitude \[10\sqrt{3}\] that are perpendicular to the plane of \[\hat{ i }  + 2 \hat{ j }  + \hat{ k } \] and \[- \hat { i }  + 3 \hat{ j }  + 4 \hat{ k } \] .

 

For any two vectors  \[\vec{a} \text{ and }  \vec{b}\] write the value of \[\left( \vec{a} . \vec{b} \right)^2 + \left| \vec{a} \times \vec{b} \right|^2\] in terms of their magnitudes.

 
 

For any two vectors \[\vec{a}\] and \[\vec{b}\] , find \[\vec{a} . \left( \vec{b} \times \vec{a} \right) .\]

 
 
 
 

If   \[\vec{a} \text{ and }  \vec{b}\] are two vectors such that \[\left| \vec{a} \times \vec{b} \right| = \sqrt{3}\text{ and }  \vec{a} . \vec{b} = 1,\]  find the angle between.

 
 

 


For any two vectors \[\vec{a} \text{ and } \vec{b} , \text{ find } \left( \vec{a} \times \vec{b} \right) . \vec{b} .\]

 

Write the value of \[\hat{ i }  \times \left(\hat{  j }  \times \hat{ k }  \right) .\]

 

Write a unit vector perpendicular to \[\hat{ i } + \hat{ j }  \text{ and }  \hat{ j }  + \hat{ k } .\]

 


If \[\vec{a}\] is a unit vector such that \[\vec{a} \times \hat{ i }  = \hat{ j }  , \text{ find }  \vec{a} . \hat{ i } \] .

 

Write the value of the area of the parallelogram determined by the vectors   \[2 \hat{ i }  \text{ and } 3 \hat{ j }  .\]

 

If θ is the angle between the vectors \[2 \hat{ i }  - 2 \hat{ j}  + 4 \hat{ k }  \text{ and } 3 \hat{ i }  + \hat { j }  + 2 \hat{ k }  ,\]  then sin θ =

 

The value of \[\left( \vec{a} \times \vec{b} \right)^2\] is 

 

The value of  \[\hat{ i }  \cdot \left( \hat{ j }  \times \hat{ k }  \right) + \hat{ j }  \cdot \left( \hat{ i }  \times \hat{ k }  \right) + \hat{ k }  \cdot \left( \hat{ i }  \times \hat{ j }  \right),\]  is 


(a)  If `veca  =  hati - 2j + 3veck , vecb = 2hati + 3hatj - 5hatk,` prove that `veca and vecaxxvecb`  are perpendicular.


Find the area of the triangle with vertices A(1, l, 2), (2, 3, 5) and (1, 5, 5).


The two adjacent sides of a parallelogram are represented by vectors `2hati - 4hatj + 5hatk` and `hati - 2hatj - 3hatk`. Find the unit vector parallel to one of its diagonals, Also, find the area of the parallelogram.


Let `veca, vecb, vecc` be three vectors mutually perpendicular to each other and have same magnitude. If a vector `vecr` satisfies. `veca xx {(vecr - vecb) xx veca} + vecb xx {(vecr - vecc) xx vecb} + vecc xx {(vecr - veca) xx vecc} = vec0`, then `vecr` is equal to ______.


If the vector `vecb = 3hatj + 4hatk` is written as the sum of a vector `vec(b_1)`, parallel to `veca = hati + hatj` and a vector `vec(b_2)`, perpendicular to `veca`, then `vec(b_1) xx vec(b_2)` is equal to ______.


Find the area of the parallelogram whose diagonals are `hati - 3hatj + hatk` and `hati + hatj + hatk`.


If `veca` and `vecb` are two non-zero vectors such that `|veca xx vecb| = veca.vecb`, find the angle between `veca` and `vecb`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×