English

If → a = ^ i + 3 ^ j − 2 ^ k and → b = − ^ i + 3 ^ k , find ∣ ∣ → a × → b ∣ ∣ - Mathematics

Advertisements
Advertisements

Question

\[\text{ If } \vec{a} = \hat { i }  + 3 \hat { j }  - 2 \hat { k } \text{ and }  \vec{b} = - \hat { i }  + 3 \hat { k }   , \text{ find }  \left| \vec{a} \times \vec{b} \right| .\]

Sum

Solution

\[Given: \]

\[ \vec{a} = \hat { i }  + 3 \hat { j } - 2 \hat { k } \]

\[ \vec{b} = - \hat { i } + 0 \hat { j } + 3 \hat { k } \]

\[ \therefore \vec{a} \times \vec{b} = \begin{vmatrix}\hat { i } & \hat { j } & \hat { k } \\ 1 & 3 & - 2 \\ - 1 & 0 & 3\end{vmatrix}\]

\[ = \left( 9 + 0 \right) \hat { i } - \left( 3 - 2 \right) \hat { j }  + \left( 0 + 3 \right) \hat { k } \]

\[ = 9 \hat { i } - \hat { j } + 3 \hat { k }  \]

\[ \Rightarrow \left| \vec{a} \times \vec{b} \right| = \sqrt{9^2 + \left( - 1 \right)^2 + 3^2}\]

\[ = \sqrt{91}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 25: Vector or Cross Product - Exercise 25.1 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 25 Vector or Cross Product
Exercise 25.1 | Q 1 | Page 29

RELATED QUESTIONS

If `veca = 2hati + 2hatj + 3hatk,  vecb = -veci + 2hatj + hatk and vecc = 3hati + hatj` are such that `veca + lambdavecb`  is perpendicular to `vecc`, then find the value of λ.


If a unit vector `veca` makes an angles `pi/3` with `hati, pi/4` with `hatj` and an acute angle θ with `hatk`, then find θ and, hence the compounds of `veca`.


Show that `(veca - vecb) xx (veca + vecb) = 2(veca xx vecb)`.


If either `veca = vec0`  or `vecb = vec0`, then `veca xxvecb = vec0`. Is the converse true? Justify your answer with an example.


Let the vectors `veca` and `vecb` be such that `|veca| = 3` and `|vecb| = sqrt2/3`, then `veca xx vecb` is a unit vector, if the angle between `veca` and `vecb` is ______.


\[\text{ If }  \vec{ a } = 3 \hat{ i }- \hat{ j }  - 2 \hat{ k } \text{  and } \vec{b} = 2 \hat{ i }  + 3 \hat{ j } + \hat{ k }  , \text{ find }  \left( \vec{a} + 2 \vec{b} \right) \times \left( 2 \vec{a} - \vec{b} \right) .\]

 


Find the area of the parallelogram determined by the vector \[3 \hat{ i } + \hat{ j }  - 2 \hat{ k } \text{  and }  \hat{ i }  - 3 \hat{ j }  + 4 \hat{ k } \] .

 


Find the area of the parallelogram determined by the vector \[\hat{ i }  - 3 \hat{ j } + \hat{ k }  \text{ and }  \hat{ i }  + \hat{ j } + \hat{ k }  .\]

 


Find the area of the parallelogram whose diagonals are  \[4 \hat{ i } - \hat{ j }  - 3 \hat{ k }  \text{ and }  - 2 \hat{ j }  + \hat{ j }  - 2 \hat{ k } \]

 


\[\text{ If }  \left| \vec{a} \right| = 13, \left| \vec{b} \right| = 5 \text{ and }  \vec{a} . \vec{b} = 60, \text{ then find }  \left| \vec{a} \times \vec{b} \right| .\]

 


Find the angle between two vectors \[\vec{a} \text{ and }  \vec{b}\] , if \[\left| \vec{a} \times \vec{b} \right| = \vec{a} \cdot \vec{b} .\]

 

What inference can you draw if \[\vec{a} \times \vec{b} = \vec{0} \text{ and }  \vec{a} \cdot \vec{b} = 0 .\]

 

If \[\vec{a,} \vec{b,} \vec{c}\] are three unit vectors such that \[\vec{a} \times \vec{b} = \vec{c} , \vec{b} \times \vec{c} = \vec{a,} \vec{c} \times \vec{a} = \vec{b} .\]  Show that \[\vec{a,} \vec{b,} \vec{c}\] form an orthonormal right handed triad of unit vectors.

 
 
 

 


If abc are the lengths of sides, BCCA and AB of a triangle ABC, prove that \[\vec{BC} + \vec{CA} + \vec{AB} = \vec{0}\]  and deduce that \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} .\]

 
 

For any two vectors \[\vec{a} \text{ and }  \vec{b}\] , prove that \[\left| \vec{a} \times \vec{b} \right|^2 = \begin{vmatrix}\vec{a} . \vec{a} & & \vec{a} . \vec{b} \\ \vec{b} . \vec{a} & & \vec{b} . \vec{b}\end{vmatrix}\]

 
 

Define  \[\vec{a} \times \vec{b}\] and prove that \[\left| \vec{a} \times \vec{b} \right| = \left( \vec{a} . \vec{b} \right)\] tan θ, where θ is the angle between \[\vec{a} \text{ and }  \vec{b}\] .

 
 

 


Using vectors find the area of the triangle with vertices, A (2, 3, 5), B (3, 5, 8) and C (2, 7, 8).


Using vectors, find the area of the triangle with vertice A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1)  .    


If  \[\left| \vec{a} \times \vec{b} \right|^2 + \left| \vec{a} \cdot \vec{b} \right|^2 = 400\] and  \[\left| \vec{a} \right| = 5,\]  then write the value of \[\left| \vec{b} \right| .\]

 

Write the value of \[\hat{ i }  × \left( \hat{ j } + \hat{ k }  \right) + \hat{ j }   ×  \left( \hat{ k } + \hat{ i }  \right) + \hat{ k }  ×   \left( \hat{ i }  + \hat{ j }  \right) .\]

 

Write the expression for the area of the parallelogram having \[\vec{a} \text{ and } \vec{b}\] as its diagonals.

 
 

If \[\vec{a} = 3 \hat{ i }  - \hat{ j }  + 2 \hat{ k } \] and  \[\vec{b} = 2 \hat { i }  + \hat{ j }  - \hat{ k} ,\]  then find \[\left( \vec{a} \times \vec{b} \right) \vec{a} .\]

 


If \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 = 144\]  and \[\left| \vec{a} \right| = 4,\]  find \[\left| \vec{b} \right|\] . 

 
 

 


If \[\vec{r} = x \hat{ i } + y \hat{ j }  + z \hat{ k }  ,\] then write the value of \[\left| \vec{r} \times \hat{ i }  \right|^2 .\]

 

 


Vectors  \[\vec{a} \text{ and }  \vec{b}\] \[\left| \vec{a} \right| = \sqrt{3}, \left| \vec{b} \right| = \frac{2}{3}\text{ and } \left( \vec{a} \times \vec{b} \right)\]  is a unit vector. Write the angle between \[\vec{a} \text{ and } \vec{b}\] .

 


Write the value of the area of the parallelogram determined by the vectors   \[2 \hat{ i }  \text{ and } 3 \hat{ j }  .\]

 

The vector \[\vec{b} = 3 \hat { i }+ 4 \hat {k }\] is to be written as the sum of a vector \[\vec{\alpha}\] parallel to \[\vec{a} = \hat {i} + \hat {j}\] and a vector \[\vec{\beta}\] perpendicular to \[\vec{a}\]. Then \[\vec{\alpha} =\]


If \[\left| \vec{a} \times \vec{b} \right| = 4, \left| \vec{a} \cdot \vec{b} \right| = 2, \text{ then }  \left| \vec{a} \right|^2 \left| \vec{b} \right|^2 =\]


(a)  If `veca  =  hati - 2j + 3veck , vecb = 2hati + 3hatj - 5hatk,` prove that `veca and vecaxxvecb`  are perpendicular.


Find a unit vector perpendicular to both the vectors `veca and vecb` , where `veca = hat i - 7 hatj +7hatk`  and  `vecb = 3hati - 2hatj + 2hatk` . 


The number of vectors of unit length perpendicular to the vectors `vec"a" = 2hat"i" + hat"j" + 2hat"k"` and `vec"b" = hat"j" + hat"k"` is ______.


Let `veca, vecb, vecc` be three vectors mutually perpendicular to each other and have same magnitude. If a vector `vecr` satisfies. `veca xx {(vecr - vecb) xx veca} + vecb xx {(vecr - vecc) xx vecb} + vecc xx {(vecr - veca) xx vecc} = vec0`, then `vecr` is equal to ______.


If the vector `vecb = 3hatj + 4hatk` is written as the sum of a vector `vec(b_1)`, parallel to `veca = hati + hatj` and a vector `vec(b_2)`, perpendicular to `veca`, then `vec(b_1) xx vec(b_2)` is equal to ______.


Let `veca = 2hati + hatj - 2hatk, vecb = hati + hatj`. If `vecc` is a vector such that `veca . vecc = \|vecc|, |vecc - veca| = 2sqrt(2)` and the angle between `veca xx vecb` and `vecc` is 30°, then `|(veca xx vecb) xx vecc|` equals ______.


Find the area of a parallelogram whose adjacent sides are determined by the vectors `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.


If `veca xx vecb = veca xx vecc` where `veca, vecb` and `vecc` are non-zero vectors, then prove that either `vecb = vecc` or `veca` and `(vecb - vecc)` are parallel.


If `veca` is a unit vector perpendicular to `vecb` and `(veca + 2vecb).(3veca - vecb) = -5`, find `|vecb|`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×