Advertisements
Advertisements
Question
If a, b, c are the lengths of sides, BC, CA and AB of a triangle ABC, prove that \[\vec{BC} + \vec{CA} + \vec{AB} = \vec{0}\] and deduce that \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} .\]
Solution
\[\text{ We have } \]
\[ \vec{BC} = \vec{a} \]
\[ \vec{CA} = \vec{b} \]
\[ \vec{AB} = \vec{c} \]
\[\left| \vec{a} \right|=a\]
\[\left| \vec{b} \right| =b ( \because \text{ Length is always positive} )\]
\[ \vec{c} =c \]
\[ \text{ Now } , \]
\[ \vec{BC} + \vec{CA} + \vec{AB} = \vec{0} ( \text{ Given } )\]
\[ \Rightarrow \vec{a} + \vec{b} + \vec{c} = \vec{0} \]
\[ \Rightarrow \vec{a} \times \left( \vec{a} + \vec{b} + \vec{c} \right) = \vec{a} \times \vec{0} \]
\[ \Rightarrow \vec{a} \times \vec{a} + \vec{a} \times \vec{b} + \vec{a} \times \vec{c} = \vec{0} \]
\[ \Rightarrow \vec{0} + \vec{a} \times \vec{b} - \vec{c} \times \vec{a} = \vec{0} \]
\[ \Rightarrow \vec{a} \times \vec{b} = \vec{c} \times \vec{a} \]
\[ \Rightarrow \left| \vec{a} \right| \left| \vec{b} \right|\sin C = \left| \vec{c} \right| \left| \vec{a} \right| \sin B\]
\[ \Rightarrow ab \sin C = ca \sin B\]
\[\text{ Dividing both sides by abc,we get } \]
\[ \Rightarrow \frac{\sin C}{c} = \frac{\sin B}{b} . . . (1)\]
\[\text{ Again } ,\]
\[ \vec{BC} + \vec{CA} + \vec{AB} = \vec{0} \]
\[ \Rightarrow \vec{a} + \vec{b} + \vec{c} = \vec{0} \]
\[ \Rightarrow \vec{b} \times \left( \vec{a} + \vec{b} + \vec{c} \right) = \vec{b} \times \vec{0} \]
\[ \Rightarrow \vec{b} \times \vec{a} + \vec{b} \times \vec{b} + \vec{b} \times \vec{c} = \vec{0} \]
\[ \Rightarrow - \vec{a} \times \vec{b} + \vec{0} + \vec{b} \times \vec{c} = \vec{0} \]
\[ \Rightarrow \vec{a} \times \vec{b} = \vec{b} \times \vec{c} \]
\[ \Rightarrow \left| \vec{a} \right| \left| \vec{b} \right| \sin C = \left| \vec{b} \right| \left| \vec{c} \right| \sin A\]
\[ \Rightarrow ab \sin C = bc \sin A\]
\[\text{ Dividing both sides by abc,we get } \]
\[ \Rightarrow \frac{\sin C}{c} = \frac{\sin A}{a} . . . (2)\]
\[\text{ From (1) and (2), we get } \]
\[\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}\]
\[ \Rightarrow \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}\]
APPEARS IN
RELATED QUESTIONS
Let the vectors `veca, vecb, vecc` given as `a_1hati + a_2hatj + a_3hatk, b_1hati + b_2hatj + b_3hatk, c_1hati + c_2hatj + c_3hatk` Then show that = `veca xx (vecb+ vecc) = veca xx vecb + veca xx vecc.`
If either `veca = vec0` or `vecb = vec0`, then `veca xxvecb = vec0`. Is the converse true? Justify your answer with an example.
Find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5).
Let `veca = 4hati + 5hatj - hatk`, `vecb = hati - 4hatj + 5hatk` and `vecc = 3hati + hatj - hatk`. Find a vector `vecd` which is perpendicular to both `vecc` and `vecb and vecd.veca = 21`
If A, B, C are three non- collinear points with position vectors `vec a, vec b, vec c`, respectively, then show that the length of the perpendicular from Con AB is `|(vec a xx vec b)+(vec b xx vec c) + (vec b xx vec a)|/|(vec b - vec a)|`
If \[\vec{a} = 2 \hat{ i } + \hat{ k } , \vec{b} = \hat { i } + \hat{ j } + \hat{ k } ,\] find the magnitude of \[\vec{a} \times \vec{b} .\]
Find the area of the parallelogram determined by the vector \[2 \hat{ i } \text{ and } 3 \hat{ j } \] .
Find the area of the parallelogram whose diagonals are \[3 \hat{ i } + 4 \hat{ j } \text{ and } \hat{ i } + \hat{ j } + \hat{ k }\]
Find the area of the parallelogram whose diagonals are \[2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k } \text{ and } 3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } \]
Find the angle between two vectors \[\vec{a} \text{ and } \vec{b}\] , if \[\left| \vec{a} \times \vec{b} \right| = \vec{a} \cdot \vec{b} .\]
if \[\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq 0,\] then show that \[\vec{a} + \vec{c} = m \vec{b} ,\] where m is any scalar.
What inference can you draw if \[\vec{a} \times \vec{b} = \vec{0} \text{ and } \vec{a} \cdot \vec{b} = 0 .\]
Define \[\vec{a} \times \vec{b}\] and prove that \[\left| \vec{a} \times \vec{b} \right| = \left( \vec{a} . \vec{b} \right)\] tan θ, where θ is the angle between \[\vec{a} \text{ and } \vec{b}\] .
Let \[\vec{a} = \hat{ i } + 4 \hat{ j } + 2 \hat{ k } , \vec{b} = 3 \hat{ i }- 2 \hat{ j } + 7 \hat{ k } \text{ and } \vec{c} = 2 \hat{ i } - \hat{ j } + 4 \hat{ k } .\] Find a vector \[\vec{d}\] which is perpendicular to both \[\vec{a} \text{ and } \vec{d}\] \[\text{ and } \vec{c} \cdot \vec{d} = 15 .\]
Find a unit vector perpendicular to each of the vectors \[\vec{a} + \vec{b} \text{ and } \vec{a} - \vec{b} , \text{ where } \vec{a} = 3 \hat{ i } + 2 \hat{ j } + 2 \hat{ k } \text{ and } \vec{b} = \hat{ i } + 2 \hat{ j } - 2 \hat{ k } .\]
Using vectors find the area of the triangle with vertices, A (2, 3, 5), B (3, 5, 8) and C (2, 7, 8).
The two adjacent sides of a parallelogram are \[2 \hat{ i } - 4 \hat{ j } + 5 \hat{ k } \text{ and } \hat{ i } - 2 \hat{ j } - 3\hat{ k } .\]\ Find the unit vector parallel to one of its diagonals. Also, find its area.
Write the value of \[\hat{ i } . \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } . \left( \hat{ k } \times \hat{ i } \right) + \hat{ k } . \left( \hat{ i } \times \hat{ j } \right) .\]
Write the expression for the area of the parallelogram having \[\vec{a} \text{ and } \vec{b}\] as its diagonals.
For any two vectors \[\vec{a} \text{ and } \vec{b}\] write the value of \[\left( \vec{a} . \vec{b} \right)^2 + \left| \vec{a} \times \vec{b} \right|^2\] in terms of their magnitudes.
Write the value of \[\hat{ i } \times \left(\hat{ j } \times \hat{ k } \right) .\]
Write a unit vector perpendicular to \[\hat{ i } + \hat{ j } \text{ and } \hat{ j } + \hat{ k } .\]
If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} . \vec{b} \right| = \left| \vec{a} \times \vec{b} \right|,\] write the angle between \[\vec{a} \text{ and } \vec{b} .\]
If \[\vec{a}\] is any vector, then \[\left( \vec{a} \times \hat{ i } \right)^2 + \left( \vec{a} \times \hat{ j } \right)^2 + \left( \vec{a} \times \hat{ k } \right)^2 =\]
If \[\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}\] and \[\vec{a} \times \vec{b} = \vec{a} \times \vec{c,} \vec{a} \neq 0,\] then
The unit vector perpendicular to the plane passing through points \[P\left( \hat{ i } - \hat{ j } + 2 \hat{ k } \right), Q\left( 2 \hat{ i } - \hat{ k } \right) \text{ and } R\left( 2 \hat{ j } + \hat{ k } \right)\] is
A unit vector perpendicular to both \[\hat{ i } + \hat{ j } \text{ and } \hat{ j } + \hat{ k } \] is
Find a unit vector perpendicular to both the vectors `veca and vecb` , where `veca = hat i - 7 hatj +7hatk` and `vecb = 3hati - 2hatj + 2hatk` .
Let `veca = hati + hatj, vecb = hati - hatj` and `vecc = hati + hatj + hatk`. If `hatn` is a unit vector such that `veca.hatn` = 0 and `vecb.hatn` = 0, then find `|vecc.hatn|`.
If `veca` and `vecb` are unit vectors inclined at an angle 30° to each other, then find the area of the parallelogram with `(veca + 3vecb)` and `(3veca + vecb)` as adjacent sides.
If `|veca xx vecb| = sqrt(3)` and `veca.vecb` = – 3, then angle between `veca` and `vecb` is ______.
If `veca xx vecb = veca xx vecc` where `veca, vecb` and `vecc` are non-zero vectors, then prove that either `vecb = vecc` or `veca` and `(vecb - vecc)` are parallel.
If `veca` and `vecb` are two non-zero vectors such that `|veca xx vecb| = veca.vecb`, find the angle between `veca` and `vecb`.