मराठी

If a, b, c are the lengths of sides, BC, CA and AB of a triangle ABC, prove that → B C + → C A + → A B = → 0 and deduce that a sin A = b sin B = c sin C . - Mathematics

Advertisements
Advertisements

प्रश्न

If abc are the lengths of sides, BCCA and AB of a triangle ABC, prove that \[\vec{BC} + \vec{CA} + \vec{AB} = \vec{0}\]  and deduce that \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} .\]

 
 
बेरीज

उत्तर

\[\text{ We have } \]
\[ \vec{BC} = \vec{a} \]
\[ \vec{CA} = \vec{b} \]
\[ \vec{AB} = \vec{c} \]
\[\left| \vec{a} \right|=a\]
\[\left| \vec{b} \right| =b ( \because \text{ Length is always positive} )\]
\[ \vec{c} =c \]
\[ \text{ Now } , \]
\[ \vec{BC} + \vec{CA} + \vec{AB} = \vec{0} ( \text{ Given } )\]
\[ \Rightarrow \vec{a} + \vec{b} + \vec{c} = \vec{0} \]
\[ \Rightarrow \vec{a} \times \left( \vec{a} + \vec{b} + \vec{c} \right) = \vec{a} \times \vec{0} \]
\[ \Rightarrow \vec{a} \times \vec{a} + \vec{a} \times \vec{b} + \vec{a} \times \vec{c} = \vec{0} \]
\[ \Rightarrow \vec{0} + \vec{a} \times \vec{b} - \vec{c} \times \vec{a} = \vec{0} \]
\[ \Rightarrow \vec{a} \times \vec{b} = \vec{c} \times \vec{a} \]
\[ \Rightarrow \left| \vec{a} \right| \left| \vec{b} \right|\sin C = \left| \vec{c} \right| \left| \vec{a} \right| \sin B\]
\[ \Rightarrow ab \sin C = ca \sin B\]
\[\text{ Dividing both sides by abc,we get } \]
\[ \Rightarrow \frac{\sin C}{c} = \frac{\sin B}{b} . . . (1)\]
\[\text{ Again } ,\]
\[ \vec{BC} + \vec{CA} + \vec{AB} = \vec{0} \]
\[ \Rightarrow \vec{a} + \vec{b} + \vec{c} = \vec{0} \]
\[ \Rightarrow \vec{b} \times \left( \vec{a} + \vec{b} + \vec{c} \right) = \vec{b} \times \vec{0} \]
\[ \Rightarrow \vec{b} \times \vec{a} + \vec{b} \times \vec{b} + \vec{b} \times \vec{c} = \vec{0} \]
\[ \Rightarrow - \vec{a} \times \vec{b} + \vec{0} + \vec{b} \times \vec{c} = \vec{0} \]
\[ \Rightarrow \vec{a} \times \vec{b} = \vec{b} \times \vec{c} \]
\[ \Rightarrow \left| \vec{a} \right| \left| \vec{b} \right| \sin C = \left| \vec{b} \right| \left| \vec{c} \right| \sin A\]
\[ \Rightarrow ab \sin C = bc \sin A\]
\[\text{ Dividing both sides by abc,we get } \]
\[ \Rightarrow \frac{\sin C}{c} = \frac{\sin A}{a} . . . (2)\]
\[\text{ From (1) and (2), we get } \]
\[\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}\]
\[ \Rightarrow \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 25: Vector or Cross Product - Exercise 25.1 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 25 Vector or Cross Product
Exercise 25.1 | Q 20 | पृष्ठ ३०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that `(veca - vecb) xx (veca + vecb) = 2(veca xx vecb)`.


Find λ and μ if  `(2hati + 6hatj + 27hatk) xx (hati + lambdahatj + muhatk) = vec0`.


Area of a rectangle having vertices A, B, C, and D with position vectors `-hati + 1/2 hatj + 4hatk, hati + 1/2 hatj + 4hatk, and -hati - 1/2j + 4hatk,` respectively is ______.


\[\text{ If } \vec{a} = \hat { i }  + 3 \hat { j }  - 2 \hat { k } \text{ and }  \vec{b} = - \hat { i }  + 3 \hat { k }   , \text{ find }  \left| \vec{a} \times \vec{b} \right| .\]


 Find a unit vector perpendicular to both the vectors  \[4 \hat{ i } - \hat{ j }  + 3 \hat{ k } \text{ and }  - 2 \hat{ i  } + \hat{ j }  - 2 \hat{ k }  .\]

 


Find the area of the parallelogram whose diagonals are  \[4 \hat{ i } - \hat{ j }  - 3 \hat{ k }  \text{ and }  - 2 \hat{ j }  + \hat{ j }  - 2 \hat{ k } \]

 


Find the area of the parallelogram whose diagonals are \[2 \hat{ i }  + 3 \hat{ j } + 6 \hat{ k } \text{ and }  3 \hat{ i }  - 6 \hat{ j }  + 2 \hat{ k } \]

 


\[\text{ If }  \left| \vec{a} \right| = 2, \left| \vec{b} \right| = 5 \text{ and }  \left| \vec{a} \times \vec{b} \right| = 8, \text { find }  \vec{a} \cdot \vec{b} .\]

 


For any two vectors \[\vec{a} \text{ and }  \vec{b}\] , prove that \[\left| \vec{a} \times \vec{b} \right|^2 = \begin{vmatrix}\vec{a} . \vec{a} & & \vec{a} . \vec{b} \\ \vec{b} . \vec{a} & & \vec{b} . \vec{b}\end{vmatrix}\]

 
 

Using vectors find the area of the triangle with vertices, A (2, 3, 5), B (3, 5, 8) and C (2, 7, 8).


If either  \[\vec{a} = \vec{0} \text{ or }  \vec{b} = \vec{0} , \text{ then }  \vec{a} \times \vec{b} = \vec{0} .\]  Is the converse true? Justify your answer with an example.

 

Define vector product of two vectors.

 

Write the value of  \[\hat{ i } . \left( \hat{ j } \times \hat{ k }  \right) + \hat{ j }  . \left( \hat{ k } \times \hat{ i }  \right) + \hat{ k }  . \left( \hat{ i }  \times \hat{ j }  \right) .\]

 


For any two vectors \[\vec{a}\] and \[\vec{b}\] , find \[\vec{a} . \left( \vec{b} \times \vec{a} \right) .\]

 
 
 
 

If \[\vec{a} = 3 \hat{ i }  - \hat{ j }  + 2 \hat{ k } \] and  \[\vec{b} = 2 \hat { i }  + \hat{ j }  - \hat{ k} ,\]  then find \[\left( \vec{a} \times \vec{b} \right) \vec{a} .\]

 


If \[\vec{r} = x \hat{ i } + y \hat{ j }  + z \hat{ k }  ,\] then write the value of \[\left| \vec{r} \times \hat{ i }  \right|^2 .\]

 

 


If \[\vec{a} \text{ and }  \vec{b}\] are unit vectors such that \[\vec{a} \times \vec{b}\] is also a unit vector, find the angle between \[\vec{a} \text{ and } \vec{b}\] .

 
 

 


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then write the value of \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 .\]

 

 


If \[\vec{a}\] is any vector, then \[\left( \vec{a} \times \hat{ i }  \right)^2 + \left( \vec{a} \times \hat{ j } \right)^2 + \left( \vec{a} \times \hat{ k }  \right)^2 =\]


If \[\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}\] and \[\vec{a} \times \vec{b} = \vec{a} \times \vec{c,} \vec{a} \neq 0,\] then


The vector \[\vec{b} = 3 \hat { i }+ 4 \hat {k }\] is to be written as the sum of a vector \[\vec{\alpha}\] parallel to \[\vec{a} = \hat {i} + \hat {j}\] and a vector \[\vec{\beta}\] perpendicular to \[\vec{a}\]. Then \[\vec{\alpha} =\]


If \[\vec{a,} \vec{b}\] represent the diagonals of a rhombus, then


Vectors \[\vec{a} \text{ and }  \vec{b}\] are inclined at angle θ = 120°. If \[\left| \vec{a} \right| = 1, \left| \vec{b} \right| = 2,\] then  \[\left[ \left( \vec{a} + 3 \vec{b} \right) \times \left( 3 \vec{a} - \vec{b} \right) \right]^2\]  is equal to 

 
  

If \[\vec{a} = \hat{ i }  + \hat{ j }  - \hat{ k }  , \vec{b} = - \hat{ i }  + 2\hat{ j }  + 2 \hat{ k }  \text{ and }  \vec{c} = - \hat{ i } + 2 \hat{ j }  - \hat{ k }  ,\]  then a unit vector normal to the vectors \[\vec{a} + \vec{b} \text{ and }  \vec{b} - \vec{c}\]  is

 

A unit vector perpendicular to both \[\hat{ i }  + \hat{ j } \text{ and }  \hat{ j } + \hat{ k } \] is

 

If \[\vec{a} = 2 \hat{ i }  - 3 \hat{ j }  - \hat{ k }  \text{ and }  \vec{b} = \hat{ i } + 4 \hat{ j }  - 2 \hat{ k 
} , \text{ then } \vec{a} \times \vec{b}\]  is


If θ is the angle between the vectors \[2 \hat{ i }  - 2 \hat{ j}  + 4 \hat{ k }  \text{ and } 3 \hat{ i }  + \hat { j }  + 2 \hat{ k }  ,\]  then sin θ =

 

The value of  \[\hat{ i }  \cdot \left( \hat{ j }  \times \hat{ k }  \right) + \hat{ j }  \cdot \left( \hat{ i }  \times \hat{ k }  \right) + \hat{ k }  \cdot \left( \hat{ i }  \times \hat{ j }  \right),\]  is 


Let `veca` and `vecb` be two unit vectors and θ is the angle between them, Then `veca + vecb` is a unit vector if-


Let `veca, vecb, vecc` be three vectors mutually perpendicular to each other and have same magnitude. If a vector `vecr` satisfies. `veca xx {(vecr - vecb) xx veca} + vecb xx {(vecr - vecc) xx vecb} + vecc xx {(vecr - veca) xx vecc} = vec0`, then `vecr` is equal to ______.


If the angle between `veca` and `vecb` is `π/3` and `|veca xx vecb| = 3sqrt(3)`, then the value of `veca.vecb` is ______.


Find the area of a parallelogram whose adjacent sides are determined by the vectors `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×