मराठी

For Any Two Vectors → a and → B , Find → a . ( → B × → a ) . - Mathematics

Advertisements
Advertisements

प्रश्न

For any two vectors \[\vec{a}\] and \[\vec{b}\] , find \[\vec{a} . \left( \vec{b} \times \vec{a} \right) .\]

 
 
 
 
टीपा लिहा

उत्तर

\[\text{ Let } :\]
\[ \vec{a} = a_1 \hat{ i }  + a_2 \hat{ j }  + a_3 \hat{ k}  \]
\[ \vec{b} = b_1 \hat{ i  }+ b_2 \hat{ j }  + b_3 \hat{ k }  \]
\[ \vec{b} \times \vec{a} = \begin{vmatrix}\hat{ i }  & \hat{ j }  & \hat{ k }  \\ b_1 & b_2 & b_3 \\ a_1 & a_2 & a_3\end{vmatrix}\]
\[ = \hat{ i } \left( b_2 a_3 - b_3 a_2 \right) - \hat{ j }  \left( b_1 a_3 - b_3 a_1 \right) + \hat{ k }\left( b_1 a_2 - b_2 a_1 \right)\]
\[\text{ Now } ,\]
\[ \vec{a} . \left( \vec{b} \times \vec{a} \right)\]
\[ = \left( a_1 \hat{ i }  + a_2 \hat{ j }  + a_3 \hat{ k} \right) . \left[ \hat{ i }  \left( b_2 a_3 - b_3 a_2 \right) - \hat{ j } \left( b_1 a_3 - b_3 a_1 \right) + \hat{k}  \left( b_1 a_2 - b_2 a_1 \right) \right]\]
\[ = a_1 \left( b_2 a_3 - b_3 a_2 \right) - a_2 \left( b_1 a_3 - b_3 a_1 \right) + a_3 \left( b_1 a_2 - b_2 a_1 \right)\]
\[ = a_1 b_2 a_3 - a_1 b_3 a_2 - a_2 b_1 a_3 + a_2 b_3 a_1 + a_3 b_1 a_2 - a_3 b_2 a_1 \]
\[ = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 25: Vector or Cross Product - very short answers [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 25 Vector or Cross Product
very short answers | Q 10 | पृष्ठ ३३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find `|veca × vecb|`, if `veca = hati - 7hatj + 7hatk` and `vecb = 3hati - 2hatj + 2hatk`.


If a unit vector `veca` makes an angles `pi/3` with `hati, pi/4` with `hatj` and an acute angle θ with `hatk`, then find θ and, hence the compounds of `veca`.


Let the vectors `veca` and `vecb` be such that `|veca| = 3` and `|vecb| = sqrt2/3`, then `veca xx vecb` is a unit vector, if the angle between `veca` and `vecb` is ______.


If A, B, C are three non- collinear points with position vectors `vec a, vec b, vec c`, respectively, then show that the length of the perpendicular from Con AB is `|(vec a xx vec b)+(vec b xx vec c) + (vec b xx  vec a)|/|(vec b -  vec a)|`


If \[\vec{a} = 2 \hat{ i } + \hat{ k }  , \vec{b} = \hat { i }  + \hat{ j } + \hat{ k }  ,\]  find the magnitude of  \[\vec{a} \times \vec{b} .\]

 

 


Find a unit vector perpendicular to the plane containing the vectors  \[\vec{a} = 2 \hat{ i } + \hat{ j }  + \hat{ k } \text{ and }  \vec{b} = \hat{ i } + 2 \hat{ j }  + \hat{ k } .\]

 


\[\text{ If }  \left| \vec{a} \right| = 2, \left| \vec{b} \right| = 5 \text{ and }  \left| \vec{a} \times \vec{b} \right| = 8, \text { find }  \vec{a} \cdot \vec{b} .\]

 


Given \[\vec{a} = \frac{1}{7}\left( 2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k }  \right), \vec{b} = \frac{1}{7}\left( 3 \hat{ i } - 6 \hat{ j }  + 2 \hat{ k }  \right), \vec{c} = \frac{1}{7}\left( 6 \hat{ i } + 2 \hat{ j }  - 3 \hat{ k }\right), \hat{ i } , \hat{ j }  , \hat{ k } \] being a right handed orthogonal system of unit vectors in space, show that \[\vec{a} , \vec{b} , \vec{c}\] is also another system.

 
 

Find the angle between two vectors \[\vec{a} \text{ and }  \vec{b}\] , if \[\left| \vec{a} \times \vec{b} \right| = \vec{a} \cdot \vec{b} .\]

 

if \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 7 \text{ and }  \vec{a} \times \vec{b} = 3 \hat{ i }  + 2 \hat{ j } + 6 \hat{ k } ,\]  find the angle between  \[\vec{a} \text{ and }  \vec{b} .\]

 


What inference can you draw if \[\vec{a} \times \vec{b} = \vec{0} \text{ and }  \vec{a} \cdot \vec{b} = 0 .\]

 

If \[\vec{a,} \vec{b,} \vec{c}\] are three unit vectors such that \[\vec{a} \times \vec{b} = \vec{c} , \vec{b} \times \vec{c} = \vec{a,} \vec{c} \times \vec{a} = \vec{b} .\]  Show that \[\vec{a,} \vec{b,} \vec{c}\] form an orthonormal right handed triad of unit vectors.

 
 
 

 


Find a unit vector perpendicular to the plane ABC, where the coordinates of AB and Care A (3, −1, 2), B (1, −1, −3) and C (4, −3, 1).


if \[\vec{a} = \hat{ i }- 2\hat{ j }  + 3 \hat{ k }  , \text{ and }  \vec{b} = 2 \hat{ i }  + 3 \hat{ j }  - 5 \hat{ k }  ,\]  then find \[\vec{a} \times \vec{b} .\]  Verify th at \[\vec{a} \text{ and }  \vec{a} \times \vec{b}\] are perpendicular to each other.

 
 
 

 


Find a unit vector perpendicular to each of the vectors \[\vec{a} + \vec{b} \text{ and }  \vec{a} - \vec{b} , \text{ where }  \vec{a} = 3 \hat{ i }  + 2 \hat{ j }  + 2 \hat{ k }  \text{ and }  \vec{b} = \hat{ i } + 2 \hat{ j }  - 2 \hat{ k }  .\]

 

If \[\vec{a} = 2 \hat{ i } - 3 \hat{ j  } + \hat{ k } , \vec{b} = -\hat{  i }  + \hat{ k } , \vec{c} = 2 \hat{ j }  - \hat{ k } \]  are three vectors, find the area of the parallelogram having diagonals \[\left( \vec{a} + \vec{b} \right)\]  and \[\left( \vec{b} + \vec{c} \right)\] .

 
 

If \[\vec{a} = a_1 \hat{ i } + a_2 \hat{ j } + a_3 \hat{ k }  , \vec{b} = b_1 \hat{ i }  + b_2 \hat{ j }  + b_3 \hat{ k }  \text{ and }  \vec{c} = c_1 \hat{ i } + c_2 \hat{ j }  + c_3 \hat{ k }  ,\]then verify that \[\vec{a} \times \left(  \vec{b} + \vec{c} \right) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} .\]


Find all vectors of magnitude \[10\sqrt{3}\] that are perpendicular to the plane of \[\hat{ i }  + 2 \hat{ j }  + \hat{ k } \] and \[- \hat { i }  + 3 \hat{ j }  + 4 \hat{ k } \] .

 

If   \[\vec{a} \text{ and }  \vec{b}\] are two vectors such that \[\left| \vec{a} \times \vec{b} \right| = \sqrt{3}\text{ and }  \vec{a} . \vec{b} = 1,\]  find the angle between.

 
 

 


For any two vectors \[\vec{a} \text{ and } \vec{b} , \text{ find } \left( \vec{a} \times \vec{b} \right) . \vec{b} .\]

 

If \[\vec{a} = 3 \hat{ i }  - \hat{ j }  + 2 \hat{ k } \] and  \[\vec{b} = 2 \hat { i }  + \hat{ j }  - \hat{ k} ,\]  then find \[\left( \vec{a} \times \vec{b} \right) \vec{a} .\]

 


Write a unit vector perpendicular to \[\hat{ i } + \hat{ j }  \text{ and }  \hat{ j }  + \hat{ k } .\]

 


If \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 = 144\]  and \[\left| \vec{a} \right| = 4,\]  find \[\left| \vec{b} \right|\] . 

 
 

 


If  \[\vec{c}\] is a unit vector perpendicular to the vectors \[\vec{a} \text{ and } \vec{b} ,\]  write another unit vector perpendicular to \[\vec{a} \text{ and }  \vec{b} .\]

 
 

 


If \[\vec{a}\] is any vector, then \[\left( \vec{a} \times \hat{ i }  \right)^2 + \left( \vec{a} \times \hat{ j } \right)^2 + \left( \vec{a} \times \hat{ k }  \right)^2 =\]


If \[\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}\] and \[\vec{a} \times \vec{b} = \vec{a} \times \vec{c,} \vec{a} \neq 0,\] then


The unit vector perpendicular to the plane passing through points \[P\left( \hat{ i } - \hat{ j }  + 2 \hat{ k }  \right), Q\left( 2 \hat{ i } - \hat{ k } \right) \text{ and }  R\left( 2 \hat{ j }  + \hat{ k }  \right)\]  is 

 

If \[\left| \vec{a} \times \vec{b} \right| = 4, \left| \vec{a} \cdot \vec{b} \right| = 2, \text{ then }  \left| \vec{a} \right|^2 \left| \vec{b} \right|^2 =\]


Find the area of the triangle with vertices A(1, l, 2), (2, 3, 5) and (1, 5, 5).


Let `veca` and `vecb` be two unit vectors and θ is the angle between them, Then `veca + vecb` is a unit vector if-


If `veca` and `vecb` are unit vectors inclined at an angle 30° to each other, then find the area of the parallelogram with `(veca + 3vecb)` and `(3veca + vecb)` as adjacent sides.


Let `hata` and `hatb` be two unit vectors such that the angle between them is `π/4`. If θ is the angle between the vectors `(hata + hatb)` and `(hata xx 2hatb + 2(hata xx hatb))`, then the value of 164 cos2θ is equal to ______.


If `|veca xx vecb| = sqrt(3)` and `veca.vecb` = – 3, then angle between `veca` and `vecb` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×