Advertisements
Advertisements
प्रश्न
If \[\vec{a,} \vec{b,} \vec{c}\] are three unit vectors such that \[\vec{a} \times \vec{b} = \vec{c} , \vec{b} \times \vec{c} = \vec{a,} \vec{c} \times \vec{a} = \vec{b} .\] Show that \[\vec{a,} \vec{b,} \vec{c}\] form an orthonormal right handed triad of unit vectors.
उत्तर
\[\text{ Given } :\]
\[ \vec{a} \times \vec{b} = \vec{c} \]
\[ \vec{b} \times \vec{c} = \vec{a} \]
\[ \vec{c} \times \vec{a} = \vec{b} . . . (1)\]
\[\text{ Now } ,\]
\[\left| \vec{a} \times \vec{b} \right| = \left| \vec{c} \right| = 1 (\because \vec{c} \text{ is a unit vector } )\]
\[\left| \vec{b} \times \vec{c} \right| = \left| \vec{a} \right| = 1 (\because \vec{a} \text{ is a unit vector } )\]
\[\left| \vec{c} \times \vec{a} \right| = \left| \vec{b} \right| = 1 (\because \vec{b} \text{ is a unit vector } )\]
\[ \therefore \left| \vec{a} \times \vec{b} \right| = \left| \vec{b} \times \vec{c} \right| = \left| \vec{c} \times \vec{a} \right| = 1 . . . (2)\]
\[ \text{ From (1) and (2), we know } \]
\[ \vec{a} , \vec{b} \text{ and } \vec{c} \text{ form an orthonormal right handed triad of unit vectors. } \]
APPEARS IN
संबंधित प्रश्न
Find `|veca × vecb|`, if `veca = hati - 7hatj + 7hatk` and `vecb = 3hati - 2hatj + 2hatk`.
Find a unit vector perpendicular to each of the vector `veca + vecb` and `veca - vecb`, where `veca = 3hati + 2hatj + 2hatk` and `vecb = hati + 2hatj - 2hatk`.
If a unit vector `veca` makes an angles `pi/3` with `hati, pi/4` with `hatj` and an acute angle θ with `hatk`, then find θ and, hence the compounds of `veca`.
Given that `veca.vecb = 0` and `veca xx vecb = 0` What can you conclude about the vectors `veca and vecb`?
Find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5).
Let `veca = 4hati + 5hatj - hatk`, `vecb = hati - 4hatj + 5hatk` and `vecc = 3hati + hatj - hatk`. Find a vector `vecd` which is perpendicular to both `vecc` and `vecb and vecd.veca = 21`
Find a unit vector perpendicular to both the vectors \[4 \hat{ i } - \hat{ j } + 3 \hat{ k } \text{ and } - 2 \hat{ i } + \hat{ j } - 2 \hat{ k } .\]
Find a vector whose length is 3 and which is perpendicular to the vector \[\vec{a} = 3 \hat{ i } + \hat{ j } - 4 \hat{ k } \text{ and } \vec{b} = 6 \hat{ i } + 5 \hat{ j } - 2 \hat{ k } .\]
Find the area of the parallelogram determined by the vector \[2 \hat{ i } \text{ and } 3 \hat{ j } \] .
Find the area of the parallelogram determined by the vector \[3 \hat{ i } + \hat{ j } - 2 \hat{ k } \text{ and } \hat{ i } - 3 \hat{ j } + 4 \hat{ k } \] .
Find the area of the parallelogram determined by the vector \[\hat{ i } - 3 \hat{ j } + \hat{ k } \text{ and } \hat{ i } + \hat{ j } + \hat{ k } .\]
Find the area of the parallelogram whose diagonals are \[4 \hat{ i } - \hat{ j } - 3 \hat{ k } \text{ and } - 2 \hat{ j } + \hat{ j } - 2 \hat{ k } \]
Find the area of the parallelogram whose diagonals are \[2 \hat{ i }+ \hat{ k } \text{ and } \hat{ i } + \hat{ j } + \hat{ k } \]
Find the area of the parallelogram whose diagonals are \[2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k } \text{ and } 3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } \]
If \[\vec{a} = 2 \hat{ i } - 3 \hat{ j } + \hat{ k } , \vec{b} = -\hat{ i } + \hat{ k } , \vec{c} = 2 \hat{ j } - \hat{ k } \] are three vectors, find the area of the parallelogram having diagonals \[\left( \vec{a} + \vec{b} \right)\] and \[\left( \vec{b} + \vec{c} \right)\] .
If either \[\vec{a} = \vec{0} \text{ or } \vec{b} = \vec{0} , \text{ then } \vec{a} \times \vec{b} = \vec{0} .\] Is the converse true? Justify your answer with an example.
Using vectors, find the area of the triangle with vertice A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1) .
Find all vectors of magnitude \[10\sqrt{3}\] that are perpendicular to the plane of \[\hat{ i } + 2 \hat{ j } + \hat{ k } \] and \[- \hat { i } + 3 \hat{ j } + 4 \hat{ k } \] .
If \[\vec{r} = x \hat{ i } + y \hat{ j } + z \hat{ k } ,\] then write the value of \[\left| \vec{r} \times \hat{ i } \right|^2 .\]
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then write the value of \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 .\]
If \[\vec{c}\] is a unit vector perpendicular to the vectors \[\vec{a} \text{ and } \vec{b} ,\] write another unit vector perpendicular to \[\vec{a} \text{ and } \vec{b} .\]
If \[\vec{a,} \vec{b}\] represent the diagonals of a rhombus, then
Vectors \[\vec{a} \text{ and } \vec{b}\] are inclined at angle θ = 120°. If \[\left| \vec{a} \right| = 1, \left| \vec{b} \right| = 2,\] then \[\left[ \left( \vec{a} + 3 \vec{b} \right) \times \left( 3 \vec{a} - \vec{b} \right) \right]^2\] is equal to
A unit vector perpendicular to both \[\hat{ i } + \hat{ j } \text{ and } \hat{ j } + \hat{ k } \] is
The value of \[\hat{ i } \cdot \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } \cdot \left( \hat{ i } \times \hat{ k } \right) + \hat{ k } \cdot \left( \hat{ i } \times \hat{ j } \right),\] is
The value of λ for which the two vectors `2hati - hatj + 2hatk` and `3hati + λhatj + hatk` are perpendicular is ______.
Find the area of the triangle with vertices A(1, l, 2), (2, 3, 5) and (1, 5, 5).
The two adjacent sides of a parallelogram are represented by vectors `2hati - 4hatj + 5hatk` and `hati - 2hatj - 3hatk`. Find the unit vector parallel to one of its diagonals, Also, find the area of the parallelogram.
Let `veca, vecb, vecc` be three vectors mutually perpendicular to each other and have same magnitude. If a vector `vecr` satisfies. `veca xx {(vecr - vecb) xx veca} + vecb xx {(vecr - vecc) xx vecb} + vecc xx {(vecr - veca) xx vecc} = vec0`, then `vecr` is equal to ______.
Let `veca = 2hati + hatj - 2hatk, vecb = hati + hatj`. If `vecc` is a vector such that `veca . vecc = \|vecc|, |vecc - veca| = 2sqrt(2)` and the angle between `veca xx vecb` and `vecc` is 30°, then `|(veca xx vecb) xx vecc|` equals ______.
If the angle between `veca` and `vecb` is `π/3` and `|veca xx vecb| = 3sqrt(3)`, then the value of `veca.vecb` is ______.
Find the area of a parallelogram whose adjacent sides are determined by the vectors `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.
If `veca` and `vecb` are two non-zero vectors such that `|veca xx vecb| = veca.vecb`, find the angle between `veca` and `vecb`.