Advertisements
Advertisements
प्रश्न
Find the area of the parallelogram determined by the vector \[\hat{ i } - 3 \hat{ j } + \hat{ k } \text{ and } \hat{ i } + \hat{ j } + \hat{ k } .\]
उत्तर
\[\text{ Let: } \]
\[ \vec{a} = \hat{ i } - 3 \hat{ j } + \hat{ k } \]
\[ \vec{b} = \hat{ i } + \hat{ j } + \hat{ k } \]
\[ \vec{a} \times \vec{b} = \begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ 1 & - 3 & 1 \\ 1 & 1 & 1\end{vmatrix}\]
\[ = \left( - 3 - 1 \right) \hat{ i } - \left( 1 - 1 \right) \hat{ j } + \left( 1 + 3 \right) \hat{ k } \]
\[ = - 4 \hat{ i } + 0 \hat{ j } + 4 \hat{ k } \]
\[\text{ Area of the parallelogram } =\left| \vec{a} \times \vec{b} \right|\]
\[ = \sqrt{\left( - 4 \right)^2 + 0 + 4^2}\]
\[ = \sqrt{32}\]
\[ = 4\sqrt{2} \text{ sq. units } .\]
APPEARS IN
संबंधित प्रश्न
If a unit vector `veca` makes an angles `pi/3` with `hati, pi/4` with `hatj` and an acute angle θ with `hatk`, then find θ and, hence the compounds of `veca`.
Find the area of the parallelogram whose adjacent sides are determined by the vector `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.
\[\text{ If } \vec{a} = \hat { i } + 3 \hat { j } - 2 \hat { k } \text{ and } \vec{b} = - \hat { i } + 3 \hat { k } , \text{ find } \left| \vec{a} \times \vec{b} \right| .\]
If \[\vec{a} = 2 \hat{ i } + \hat{ k } , \vec{b} = \hat { i } + \hat{ j } + \hat{ k } ,\] find the magnitude of \[\vec{a} \times \vec{b} .\]
Find a unit vector perpendicular to both the vectors \[4 \hat{ i } - \hat{ j } + 3 \hat{ k } \text{ and } - 2 \hat{ i } + \hat{ j } - 2 \hat{ k } .\]
Find a unit vector perpendicular to the plane containing the vectors \[\vec{a} = 2 \hat{ i } + \hat{ j } + \hat{ k } \text{ and } \vec{b} = \hat{ i } + 2 \hat{ j } + \hat{ k } .\]
Find a vector of magnitude 49, which is perpendicular to both the vectors \[2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k } \text{ and } 3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } .\]
Find a vector whose length is 3 and which is perpendicular to the vector \[\vec{a} = 3 \hat{ i } + \hat{ j } - 4 \hat{ k } \text{ and } \vec{b} = 6 \hat{ i } + 5 \hat{ j } - 2 \hat{ k } .\]
if \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 7 \text{ and } \vec{a} \times \vec{b} = 3 \hat{ i } + 2 \hat{ j } + 6 \hat{ k } ,\] find the angle between \[\vec{a} \text{ and } \vec{b} .\]
If \[\vec{a,} \vec{b,} \vec{c}\] are three unit vectors such that \[\vec{a} \times \vec{b} = \vec{c} , \vec{b} \times \vec{c} = \vec{a,} \vec{c} \times \vec{a} = \vec{b} .\] Show that \[\vec{a,} \vec{b,} \vec{c}\] form an orthonormal right handed triad of unit vectors.
If a, b, c are the lengths of sides, BC, CA and AB of a triangle ABC, prove that \[\vec{BC} + \vec{CA} + \vec{AB} = \vec{0}\] and deduce that \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} .\]
Find the area of the triangle formed by O, A, B when \[\vec{OA} = \hat{ i } + 2 \hat{ j } + 3 \hat{ k } , \vec{OB} = - 3 \hat{ i } - 2 \hat{ j }+ \hat{ k } .\]
Find a unit vector perpendicular to each of the vectors \[\vec{a} + \vec{b} \text{ and } \vec{a} - \vec{b} , \text{ where } \vec{a} = 3 \hat{ i } + 2 \hat{ j } + 2 \hat{ k } \text{ and } \vec{b} = \hat{ i } + 2 \hat{ j } - 2 \hat{ k } .\]
Using vectors find the area of the triangle with vertices, A (2, 3, 5), B (3, 5, 8) and C (2, 7, 8).
If \[\vec{a} = 2 \hat{ i } - 3 \hat{ j } + \hat{ k } , \vec{b} = -\hat{ i } + \hat{ k } , \vec{c} = 2 \hat{ j } - \hat{ k } \] are three vectors, find the area of the parallelogram having diagonals \[\left( \vec{a} + \vec{b} \right)\] and \[\left( \vec{b} + \vec{c} \right)\] .
Define vector product of two vectors.
Write the value \[\left( \hat{ i } \times \hat{ j } \right) \cdot \hat{ k } + \hat{ i } \cdot \hat{ j } .\]
Write the value of \[\hat{ i } × \left( \hat{ j } + \hat{ k } \right) + \hat{ j } × \left( \hat{ k } + \hat{ i } \right) + \hat{ k } × \left( \hat{ i } + \hat{ j } \right) .\]
If \[\vec{a} \text{ and } \vec{b}\] are two vectors of magnitudes 3 and \[\frac{\sqrt{2}}{3}\] espectively such that \[\vec{a} \times \vec{b}\] is a unit vector. Write the angle between \[\vec{a} \text{ and } \vec{b} .\]
For any three vectors \[\vec{a,} \vec{b} \text{ and } \vec{c}\] write the value of \[\vec{a} \times \left( \vec{b} + \vec{c} \right) + \vec{b} \times \left( \vec{c} + \vec{a} \right) + \vec{c} \times \left( \vec{a} + \vec{b} \right) .\]
If \[\vec{r} = x \hat{ i } + y \hat{ j } + z \hat{ k } ,\] then write the value of \[\left| \vec{r} \times \hat{ i } \right|^2 .\]
If \[\vec{a}\] is a unit vector such that \[\vec{a} \times \hat{ i } = \hat{ j } , \text{ find } \vec{a} . \hat{ i } \] .
Find a vector of magnitude \[\sqrt{171}\] which is perpendicular to both of the vectors \[\vec{a} = \hat{ i } + 2 \hat{ j } - 3 \hat{ k } \] and \[\vec{a} = \hat{ i } + 2 \hat{ j } - 3 \hat{ k } \] .
Write the angle between the vectors \[\vec{a} \times \vec{b}\] and \[\vec{b} \times \vec{a}\] .
If \[\vec{a}\] is any vector, then \[\left( \vec{a} \times \hat{ i } \right)^2 + \left( \vec{a} \times \hat{ j } \right)^2 + \left( \vec{a} \times \hat{ k } \right)^2 =\]
If \[\vec{a,} \vec{b}\] represent the diagonals of a rhombus, then
Vectors \[\vec{a} \text{ and } \vec{b}\] are inclined at angle θ = 120°. If \[\left| \vec{a} \right| = 1, \left| \vec{b} \right| = 2,\] then \[\left[ \left( \vec{a} + 3 \vec{b} \right) \times \left( 3 \vec{a} - \vec{b} \right) \right]^2\] is equal to
If \[\vec{a} = \hat{ i } + \hat{ j } - \hat{ k } , \vec{b} = - \hat{ i } + 2\hat{ j } + 2 \hat{ k } \text{ and } \vec{c} = - \hat{ i } + 2 \hat{ j } - \hat{ k } ,\] then a unit vector normal to the vectors \[\vec{a} + \vec{b} \text{ and } \vec{b} - \vec{c}\] is
The value of \[\left( \vec{a} \times \vec{b} \right)^2\] is
The value of \[\hat{ i } \cdot \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } \cdot \left( \hat{ i } \times \hat{ k } \right) + \hat{ k } \cdot \left( \hat{ i } \times \hat{ j } \right),\] is
The value of λ for which the two vectors `2hati - hatj + 2hatk` and `3hati + λhatj + hatk` are perpendicular is ______.
Find the area of the triangle with vertices A(1, l, 2), (2, 3, 5) and (1, 5, 5).
The two adjacent sides of a parallelogram are represented by vectors `2hati - 4hatj + 5hatk` and `hati - 2hatj - 3hatk`. Find the unit vector parallel to one of its diagonals, Also, find the area of the parallelogram.
If `veca = hati + hatj + hatk` and `vecb = hati + 2hatj + 3hatk` then find a unit vector perpendicular to both `veca + vecb` and `veca - vecb`.
If `veca xx vecb = veca xx vecc` where `veca, vecb` and `vecc` are non-zero vectors, then prove that either `vecb = vecc` or `veca` and `(vecb - vecc)` are parallel.