Advertisements
Advertisements
Question
Let `veca = 2hati + hatj - 2hatk, vecb = hati + hatj`. If `vecc` is a vector such that `veca . vecc = \|vecc|, |vecc - veca| = 2sqrt(2)` and the angle between `veca xx vecb` and `vecc` is 30°, then `|(veca xx vecb) xx vecc|` equals ______.
Options
`1/2`
`(3sqrt(3))/2`
3
`3/2`
Solution
Let `veca = 2hati + hatj - 2hatk, vecb = hati + hatj`. If `vecc` is a vector such that `veca . vecc = \|vecc|, |vecc - veca| = 2sqrt(2)` and the angle between `veca xx vecb` and `vecc` is 30°, then `|(veca xx vecb) xx vecc|` equals `underlinebb(3/2)`.
Explanation:
`veca = 2hati + hatj - 2hatk, vecb = hati + hatj`
`\implies |veca|` = 3
and `veca xx vecb = |(hati, hatj, hatk),(2, 1, -2),(1, 1, 0)| = 2hati - 2hatj + hatk`
`|veca xx vecb| = sqrt(4 + 4 + 1)` = 3
Now, `|vecc - veca| = 2sqrt(2) \implies |vecc - veca|^2` = 8
`\implies |vecc - veca|.(vecc - veca)` = 8
`\implies |vecc|^2 + |veca|^2 - 2vecc.veca` = 8
`\implies |vecc|^2 + 9 - 2|vecc|` = 8
`\implies (|vecc| - 1)^2` = 0
`\implies |vecc|` = 1
∴ `|(veca xx vecb) xx vecc| = |veca xx vecb||vecc| sin 30^circ = 3 xx 1 xx 1/2 = 3/2`