Advertisements
Advertisements
प्रश्न
The two adjacent sides of a parallelogram are \[2 \hat{ i } - 4 \hat{ j } + 5 \hat{ k } \text{ and } \hat{ i } - 2 \hat{ j } - 3\hat{ k } .\]\ Find the unit vector parallel to one of its diagonals. Also, find its area.
उत्तर
\[\text{ Suppose } \square ABCD \text{ is the given parallelogram and AC is its diagonal } . \]
\[\text{ Let } : \]
\[ \vec{AB} = 2 \hat{ i } - 4 \hat{ j } + 5 \hat{ k } \]
\[ \vec{BC} = \hat{ i } - 2 \hat{ j } - 3 \hat{ k } \]
\[ \therefore \text{ Diagonal } \vec{AC} = \vec{AB} + \vec{BC} \]
\[ = 3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } \]
\[ \Rightarrow \left| \vec{AC} \right| = \sqrt{9 + 36 + 4}\]
\[ = 7\]
\[\text{ Unit vector parallel to } \vec{AC} =\frac{\vec{AC}}{\left| \vec{AC} \right|}\]
\[ =\frac{3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } }{7}\]
\[\text{ Now } ,\]
\[ \vec{AB} \times \vec{BC} = \begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ 2 & - 4 & 5 \\ 1 & - 2 & - 3\end{vmatrix}\]
\[ = 22 \hat{ i } + 11 \hat{ j } + 0 \hat{ k } \]
\[ \Rightarrow \left| \vec{AB} \times \vec{AC} \right| = \sqrt{484 + 121}\]
\[ = \sqrt{605}\]
\[ = 11\sqrt{5}\]
\[Area of triangleABC=\frac{1}{2}\left| \vec{AB} \times \vec{AC} \right|\]
\[ = \frac{11\sqrt{5}}{2}\text{ sq . units } \]
APPEARS IN
संबंधित प्रश्न
If `veca = 2hati + 2hatj + 3hatk, vecb = -veci + 2hatj + hatk and vecc = 3hati + hatj` are such that `veca + lambdavecb` is perpendicular to `vecc`, then find the value of λ.
Find `|veca × vecb|`, if `veca = hati - 7hatj + 7hatk` and `vecb = 3hati - 2hatj + 2hatk`.
Find a unit vector perpendicular to each of the vector `veca + vecb` and `veca - vecb`, where `veca = 3hati + 2hatj + 2hatk` and `vecb = hati + 2hatj - 2hatk`.
If a unit vector `veca` makes an angles `pi/3` with `hati, pi/4` with `hatj` and an acute angle θ with `hatk`, then find θ and, hence the compounds of `veca`.
Show that `(veca - vecb) xx (veca + vecb) = 2(veca xx vecb)`.
Find the area of the parallelogram whose adjacent sides are determined by the vector `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.
Find a unit vector perpendicular to both the vectors \[\vec{a} + \vec{b} \text { and } \vec{a} - \vec{b}\] ,where \[\vec{a} = \hat{i}+ \hat{j} + \hat{k} , \vec{b} =\hat {i} + 2 \hat{j} + 3 \hat{k}\].
If \[\vec{a} = 3 \hat { i } + 4 \hat { j } \text{ and } \vec{b} = \hat { i } + \hat{ j } + \hat{ k } ,\] find the value of \[\left| \vec{a} \times \vec{b} \right| .\]
Find the magnitude of \[\vec{a} = \left( 3 \hat{ k } + 4 \hat{ j } \right) \times \left( \hat{ i } + \hat{ j } - \hat{ k } \right) .\]
Find a vector whose length is 3 and which is perpendicular to the vector \[\vec{a} = 3 \hat{ i } + \hat{ j } - 4 \hat{ k } \text{ and } \vec{b} = 6 \hat{ i } + 5 \hat{ j } - 2 \hat{ k } .\]
Find the area of the parallelogram whose diagonals are \[2 \hat{ i }+ \hat{ k } \text{ and } \hat{ i } + \hat{ j } + \hat{ k } \]
Find a unit vector perpendicular to the plane ABC, where the coordinates of A, B and Care A (3, −1, 2), B (1, −1, −3) and C (4, −3, 1).
if \[\vec{a} = \hat{ i }- 2\hat{ j } + 3 \hat{ k } , \text{ and } \vec{b} = 2 \hat{ i } + 3 \hat{ j } - 5 \hat{ k } ,\] then find \[\vec{a} \times \vec{b} .\] Verify th at \[\vec{a} \text{ and } \vec{a} \times \vec{b}\] are perpendicular to each other.
If \[\vec{p} \text{ and } \vec{q}\] are unit vectors forming an angle of 30°; find the area of the parallelogram having \[\vec{a} = \vec{p} + 2 \vec{q} \text{ and } \vec{b} = 2 \vec{p} + \vec{q}\] as its diagonals.
Find the area of the triangle formed by O, A, B when \[\vec{OA} = \hat{ i } + 2 \hat{ j } + 3 \hat{ k } , \vec{OB} = - 3 \hat{ i } - 2 \hat{ j }+ \hat{ k } .\]
Using vectors find the area of the triangle with vertices, A (2, 3, 5), B (3, 5, 8) and C (2, 7, 8).
If \[\vec{a} = 2 \hat{ i } - 3 \hat{ j } + \hat{ k } , \vec{b} = -\hat{ i } + \hat{ k } , \vec{c} = 2 \hat{ j } - \hat{ k } \] are three vectors, find the area of the parallelogram having diagonals \[\left( \vec{a} + \vec{b} \right)\] and \[\left( \vec{b} + \vec{c} \right)\] .
Write the value \[\left( \hat{ i } \times \hat{ j } \right) \cdot \hat{ k } + \hat{ i } \cdot \hat{ j } .\]
Write the expression for the area of the parallelogram having \[\vec{a} \text{ and } \vec{b}\] as its diagonals.
If \[\vec{a} \text{ and } \vec{b}\] are two vectors of magnitudes 3 and \[\frac{\sqrt{2}}{3}\] espectively such that \[\vec{a} \times \vec{b}\] is a unit vector. Write the angle between \[\vec{a} \text{ and } \vec{b} .\]
For any three vectors \[\vec{a,} \vec{b} \text{ and } \vec{c}\] write the value of \[\vec{a} \times \left( \vec{b} + \vec{c} \right) + \vec{b} \times \left( \vec{c} + \vec{a} \right) + \vec{c} \times \left( \vec{a} + \vec{b} \right) .\]
For any two vectors \[\vec{a} \text{ and } \vec{b} , \text{ find } \left( \vec{a} \times \vec{b} \right) . \vec{b} .\]
If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} . \vec{b} \right| = \left| \vec{a} \times \vec{b} \right|,\] write the angle between \[\vec{a} \text{ and } \vec{b} .\]
If \[\vec{c}\] is a unit vector perpendicular to the vectors \[\vec{a} \text{ and } \vec{b} ,\] write another unit vector perpendicular to \[\vec{a} \text{ and } \vec{b} .\]
If \[\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}\] and \[\vec{a} \times \vec{b} = \vec{a} \times \vec{c,} \vec{a} \neq 0,\] then
A unit vector perpendicular to both \[\hat{ i } + \hat{ j } \text{ and } \hat{ j } + \hat{ k } \] is
If \[\vec{a} = 2 \hat{ i } - 3 \hat{ j } - \hat{ k } \text{ and } \vec{b} = \hat{ i } + 4 \hat{ j } - 2 \hat{ k
} , \text{ then } \vec{a} \times \vec{b}\] is
If \[\left| \vec{a} \times \vec{b} \right| = 4, \left| \vec{a} \cdot \vec{b} \right| = 2, \text{ then } \left| \vec{a} \right|^2 \left| \vec{b} \right|^2 =\]
(a) If `veca = hati - 2j + 3veck , vecb = 2hati + 3hatj - 5hatk,` prove that `veca and vecaxxvecb` are perpendicular.
Find a unit vector perpendicular to both the vectors `veca and vecb` , where `veca = hat i - 7 hatj +7hatk` and `vecb = 3hati - 2hatj + 2hatk` .
Let `hata` and `hatb` be two unit vectors such that the angle between them is `π/4`. If θ is the angle between the vectors `(hata + hatb)` and `(hata xx 2hatb + 2(hata xx hatb))`, then the value of 164 cos2θ is equal to ______.
Find the area of a parallelogram whose adjacent sides are determined by the vectors `veca = hati - hatj + 3hatk` and `vecb = 2hati - 7hatj + hatk`.
If `veca` and `vecb` are two non-zero vectors such that `|veca xx vecb| = veca.vecb`, find the angle between `veca` and `vecb`.