Advertisements
Advertisements
प्रश्न
Write the value of \[\hat{ i } × \left( \hat{ j } + \hat{ k } \right) + \hat{ j } × \left( \hat{ k } + \hat{ i } \right) + \hat{ k } × \left( \hat{ i } + \hat{ j } \right) .\]
उत्तर
\[\hat{ i } \times \left( \hat{ j } + \hat{ k } \right) + \hat{ j } \times \left( \hat{ k } + \hat{ i } \right) + \hat{ k } \times \left( \hat{ i } + \hat{ j } \right)\]
\[ = \left( \hat{ i } \times \hat{ j } \right) + \left( \hat{ i } \times \hat{ k } \right) + \left( \hat{ j } \times \hat{ k } \right) + \left( \hat{ j } \times \hat{ i} \right) + \left( \hat{ k } \times \hat{ i } \right) + \left( \hat{ k } \times \hat{ j } \right)\]
\[ = \hat{ k } - \hat{ j } + \hat{ i } - \hat{ k } + \hat{ j } - \hat{ i } \]
\[ = \vec{0}\]
APPEARS IN
संबंधित प्रश्न
Given that `veca.vecb = 0` and `veca xx vecb = 0` What can you conclude about the vectors `veca and vecb`?
Let the vectors `veca, vecb, vecc` given as `a_1hati + a_2hatj + a_3hatk, b_1hati + b_2hatj + b_3hatk, c_1hati + c_2hatj + c_3hatk` Then show that = `veca xx (vecb+ vecc) = veca xx vecb + veca xx vecc.`
If either `veca = vec0` or `vecb = vec0`, then `veca xxvecb = vec0`. Is the converse true? Justify your answer with an example.
Area of a rectangle having vertices A, B, C, and D with position vectors `-hati + 1/2 hatj + 4hatk, hati + 1/2 hatj + 4hatk, and -hati - 1/2j + 4hatk,` respectively is ______.
If \[\vec{a} = 2 \hat{ i } + \hat{ k } , \vec{b} = \hat { i } + \hat{ j } + \hat{ k } ,\] find the magnitude of \[\vec{a} \times \vec{b} .\]
Find a unit vector perpendicular to both the vectors \[4 \hat{ i } - \hat{ j } + 3 \hat{ k } \text{ and } - 2 \hat{ i } + \hat{ j } - 2 \hat{ k } .\]
Find the area of the parallelogram determined by the vector \[3 \hat{ i } + \hat{ j } - 2 \hat{ k } \text{ and } \hat{ i } - 3 \hat{ j } + 4 \hat{ k } \] .
Find the area of the parallelogram whose diagonals are \[3 \hat{ i } + 4 \hat{ j } \text{ and } \hat{ i } + \hat{ j } + \hat{ k }\]
Given \[\vec{a} = \frac{1}{7}\left( 2 \hat{ i } + 3 \hat{ j } + 6 \hat{ k } \right), \vec{b} = \frac{1}{7}\left( 3 \hat{ i } - 6 \hat{ j } + 2 \hat{ k } \right), \vec{c} = \frac{1}{7}\left( 6 \hat{ i } + 2 \hat{ j } - 3 \hat{ k }\right), \hat{ i } , \hat{ j } , \hat{ k } \] being a right handed orthogonal system of unit vectors in space, show that \[\vec{a} , \vec{b} , \vec{c}\] is also another system.
Find the angle between two vectors \[\vec{a} \text{ and } \vec{b}\] , if \[\left| \vec{a} \times \vec{b} \right| = \vec{a} \cdot \vec{b} .\]
if \[\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq 0,\] then show that \[\vec{a} + \vec{c} = m \vec{b} ,\] where m is any scalar.
Using vectors find the area of the triangle with vertices, A (2, 3, 5), B (3, 5, 8) and C (2, 7, 8).
If \[\vec{a} = 2 \hat{ i } - 3 \hat{ j } + \hat{ k } , \vec{b} = -\hat{ i } + \hat{ k } , \vec{c} = 2 \hat{ j } - \hat{ k } \] are three vectors, find the area of the parallelogram having diagonals \[\left( \vec{a} + \vec{b} \right)\] and \[\left( \vec{b} + \vec{c} \right)\] .
The two adjacent sides of a parallelogram are \[2 \hat{ i } - 4 \hat{ j } + 5 \hat{ k } \text{ and } \hat{ i } - 2 \hat{ j } - 3\hat{ k } .\]\ Find the unit vector parallel to one of its diagonals. Also, find its area.
Write the value of \[\hat{ i } . \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } . \left( \hat{ k } \times \hat{ i } \right) + \hat{ k } . \left( \hat{ j } \times \hat{ i } \right) .\]
Write the value of \[\hat{ i } . \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } . \left( \hat{ k } \times \hat{ i } \right) + \hat{ k } . \left( \hat{ i } \times \hat{ j } \right) .\]
If \[\vec{a} \text{ and } \vec{b}\] are two vectors of magnitudes 3 and \[\frac{\sqrt{2}}{3}\] espectively such that \[\vec{a} \times \vec{b}\] is a unit vector. Write the angle between \[\vec{a} \text{ and } \vec{b} .\]
For any two vectors \[\vec{a}\] and \[\vec{b}\] , find \[\vec{a} . \left( \vec{b} \times \vec{a} \right) .\]
If \[\vec{a} = 3 \hat{ i } - \hat{ j } + 2 \hat{ k } \] and \[\vec{b} = 2 \hat { i } + \hat{ j } - \hat{ k} ,\] then find \[\left( \vec{a} \times \vec{b} \right) \vec{a} .\]
If \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 = 144\] and \[\left| \vec{a} \right| = 4,\] find \[\left| \vec{b} \right|\] .
If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, then write the value of \[\left| \vec{a} \times \vec{b} \right|^2 + \left( \vec{a} . \vec{b} \right)^2 .\]
If \[\vec{a}\] is a unit vector such that \[\vec{a} \times \hat{ i } = \hat{ j } , \text{ find } \vec{a} . \hat{ i } \] .
Vectors \[\vec{a} \text{ and } \vec{b}\] \[\left| \vec{a} \right| = \sqrt{3}, \left| \vec{b} \right| = \frac{2}{3}\text{ and } \left( \vec{a} \times \vec{b} \right)\] is a unit vector. Write the angle between \[\vec{a} \text{ and } \vec{b}\] .
Write the value of the area of the parallelogram determined by the vectors \[2 \hat{ i } \text{ and } 3 \hat{ j } .\]
Write the value of \[\left( \hat{ i } \times \hat{ j } \right) \cdot \hat{ k } + \left( \hat{ j } + \hat{ k } \right) \cdot \hat{ j } \]
Find a vector of magnitude \[\sqrt{171}\] which is perpendicular to both of the vectors \[\vec{a} = \hat{ i } + 2 \hat{ j } - 3 \hat{ k } \] and \[\vec{a} = \hat{ i } + 2 \hat{ j } - 3 \hat{ k } \] .
Write the number of vectors of unit length perpendicular to both the vectors \[\vec{a} = 2 \hat{ i } + \hat{ j } + 2 \hat{ k } \text{ and } \vec{b} = \hat{ j } + \hat{ k } \] .
Write the angle between the vectors \[\vec{a} \times \vec{b}\] and \[\vec{b} \times \vec{a}\] .
The unit vector perpendicular to the plane passing through points \[P\left( \hat{ i } - \hat{ j } + 2 \hat{ k } \right), Q\left( 2 \hat{ i } - \hat{ k } \right) \text{ and } R\left( 2 \hat{ j } + \hat{ k } \right)\] is
If θ is the angle between the vectors \[2 \hat{ i } - 2 \hat{ j} + 4 \hat{ k } \text{ and } 3 \hat{ i } + \hat { j } + 2 \hat{ k } ,\] then sin θ =
The value of \[\hat{ i } \cdot \left( \hat{ j } \times \hat{ k } \right) + \hat{ j } \cdot \left( \hat{ i } \times \hat{ k } \right) + \hat{ k } \cdot \left( \hat{ i } \times \hat{ j } \right),\] is
(a) If `veca = hati - 2j + 3veck , vecb = 2hati + 3hatj - 5hatk,` prove that `veca and vecaxxvecb` are perpendicular.
Find a unit vector perpendicular to both the vectors `veca and vecb` , where `veca = hat i - 7 hatj +7hatk` and `vecb = 3hati - 2hatj + 2hatk` .
If `|veca xx vecb| = sqrt(3)` and `veca.vecb` = – 3, then angle between `veca` and `vecb` is ______.
If `veca = hati + hatj + hatk` and `vecb = hati + 2hatj + 3hatk` then find a unit vector perpendicular to both `veca + vecb` and `veca - vecb`.