हिंदी

Find the Area of the Parallelogram Determined by the Vector 3 ^ I + ^ J − 2 ^ K and ^ I − 3 ^ J + 4 ^ K - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the parallelogram determined by the vector 3i^+j^2k^ and i^3j^+4k^ .

 

योग

उत्तर

 Let :
a=3i^+j^2k^
b=1i^3j^+4k^
a×b=|i^j^k^312134|
=i^(46)j^(12+2)+k^(91)
=2i^14j^10k^
 Area of the parallelogram =|a×b|
=(2)2+(14)2+(10)2
=300
=103 sq. units 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 25: Vector or Cross Product - Exercise 25.1 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 25 Vector or Cross Product
Exercise 25.1 | Q 8.3 | पृष्ठ २९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If a unit vector a makes an angles π3 with i^,π4 with j^ and an acute angle θ with k^, then find θ and, hence the compounds of a.


Show that (a-b)×(a+b)=2(a×b).


Find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5).


If A, B, C are three non- collinear points with position vectors a,b,c, respectively, then show that the length of the perpendicular from Con AB is |(a×b)+(b×c)+(b× a)||(b- a)|


 If a=i^+3j^2k^ and b=i^+3k^, find |a×b|.


If a=3i^+4j^ and b=i^+j^+k^,  find the value of |a×b|.

 

 Find a unit vector perpendicular to both the vectors  4i^j^+3k^ and 2i^+j^2k^.

 


Find the area of the parallelogram determined by the vector 2i^ and 3j^ .

 


Given a=17(2i^+3j^+6k^),b=17(3i^6j^+2k^),c=17(6i^+2j^3k^),i^,j^,k^ being a right handed orthogonal system of unit vectors in space, show that a,b,c is also another system.

 
 

 If |a|=13,|b|=5 and a.b=60, then find |a×b|.

 


If a,b,c are three unit vectors such that a×b=c,b×c=a,c×a=b.  Show that a,b,c form an orthonormal right handed triad of unit vectors.

 
 
 

 


Find a unit vector perpendicular to the plane ABC, where the coordinates of AB and Care A (3, −1, 2), B (1, −1, −3) and C (4, −3, 1).


if a=i^2j^+3k^, and b=2i^+3j^5k^,  then find a×b.  Verify th at a and a×b are perpendicular to each other.

 
 
 

 


If  p and q are unit vectors forming an angle of 30°; find the area of the parallelogram having a=p+2q and b=2p+q as its diagonals.

 
 

 


Define  a×b and prove that |a×b|=(a.b) tan θ, where θ is the angle between a and b .

 
 

 


Let a=i^+4j^+2k^,b=3i^2j^+7k^ and c=2i^j^+4k^.  Find a vector d which is perpendicular to both a and d  and cd=15.

 
 

 


If either  a=0 or b=0, then a×b=0.  Is the converse true? Justify your answer with an example.

 

If a=a1i^+a2j^+a3k^,b=b1i^+b2j^+b3k^ and c=c1i^+c2j^+c3k^,then verify that a×(b+c)=a×b+a×c.


Using vectors, find the area of the triangle with vertice A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1)  .    


Find all vectors of magnitude 103 that are perpendicular to the plane of i^+2j^+k^ and i^+3j^+4k^ .

 

Write the value of  i^.(j^×k^)+j^.(k^×i^)+k^.(i^×j^).

 


Write the expression for the area of the parallelogram having a and b as its diagonals.

 
 

If r=xi^+yj^+zk^, then write the value of |r×i^|2.

 

 


If a and b are two vectors such that |a.b|=|a×b|,  write the angle between a and b.

 
 

 


The unit vector perpendicular to the plane passing through points P(i^j^+2k^),Q(2i^k^) and R(2j^+k^)  is 

 

If a=2i^3j^k^ and b=i^+4j^2k^, then a×b  is


If |a×b|=4,|ab|=2, then |a|2|b|2=


The value of  i^(j^×k^)+j^(i^×k^)+k^(i^×j^),  is 


If θ is the angle between any two vectors a¯ and b¯ and |a¯·b¯|=|a¯×b¯| then θ is equal to ______.


(a)  If a = i^-2j+3k,b=2i^+3j^-5k^, prove that aanda×b  are perpendicular.


Find a unit vector perpendicular to both the vectors aandb , where a=i^-7j^+7k^  and  b=3i^-2j^+2k^


The value of λ for which the two vectors 2i^-j^+2k^ and 3i^+λj^+k^ are perpendicular is ______.


What is the sum of vector a=i^-2i^+k^,b=-2i^+4j^+5k^ and c=i^-6j^-7k^


Let a and b be two unit vectors and θ is the angle between them, Then a+b is a unit vector if-


Let a,b,c be three vectors mutually perpendicular to each other and have same magnitude. If a vector r satisfies. a×{(r-b)×a}+b×{(r-c)×b}+c×{(r-a)×c}=0, then r is equal to ______.


If |a×b|=3 and a.b = – 3, then angle between a and b is ______.


If a=i^+j^+k^ and b=i^+2j^+3k^ then find a unit vector perpendicular to both a+b and a-b.


If a and b are two non-zero vectors such that |a×b|=a.b, find the angle between a and b.


If a is a unit vector perpendicular to b and (a+2b).(3a-b)=-5, find |b|.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.