हिंदी

Find All Vectors of Magnitude 10 √ 3 that Are Perpendicular to the Plane of ^ I + 2 ^ J + ^ K and − ^ I + 3 ^ J + 4 ^ K . - Mathematics

Advertisements
Advertisements

प्रश्न

Find all vectors of magnitude \[10\sqrt{3}\] that are perpendicular to the plane of \[\hat{ i }  + 2 \hat{ j }  + \hat{ k } \] and \[- \hat { i }  + 3 \hat{ j }  + 4 \hat{ k } \] .

 
योग

उत्तर

Let \[\vec{a} = \hat{ i }  + 2 \hat{ j } + \hat{ k } \] and \[\vec{b} = - \hat{ i } + 3 \hat{ j }  + 4 \hat{ k } \] .

Unit vectors perpendicular to both \[\vec{a}\] and  \[\vec{b}\] =  \[\pm \frac{\vec{a} \times \vec{b}}{\left| \vec{a} \times \vec{b} \right|}\]

Now,

\[\vec{a} \times \vec{b} = \begin{vmatrix}\hat{ i }  & \hat{ j  } & \hat{ k }  \\ 1 & 2 & 1 \\ - 1 & 3 & 4\end{vmatrix} = 5 \hat{ i }  - 5 \hat{ j } + \hat{ k }  \]

\[ \therefore \left| \vec{a} \times \vec{b} \right| = \left| 5 \hat{ i }  - 5 \hat{ j }  + 5 \hat{ k }  \right| = \sqrt{5^2 + \left( - 5 \right)^2 + 5^2} = \sqrt{75} = 5\sqrt{3}\]

Unit vectors perpendicular to both \[\vec{a}\] and \[\vec{b}\] =  \[\pm \frac{5 \hat{ i } - 5 \hat{ j }  + 5 \hat{ k } }{5\sqrt{3}} = \pm \frac{\hat{ i }  - \hat{ j }  + \hat{ k } }{\sqrt{3}}\]

∴ Required vectors = \[10\sqrt{3}\left( \pm \frac{\hat{ i}  - \hat{ j }  + \hat{ k } }{\sqrt{3}} \right) = \pm 10\left( \hat{ i } - \hat{ j }  + \hat{ k }  \right)\] 

Thus, the vectors of magnitude \[10\sqrt{3}\]  that are perpendicular to the plane of \[\hat{ i }  + 2 \hat{ j }  + \hat{ k } \] and  \[- \hat{ i }  + 3 \hat{ j } + 4 \hat{ k } \] are  \[\pm 10\left( \hat{ i } - \hat{ j }  + \hat{ k }  \right)\] .

 
 
 
 

 

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 25: Vector or Cross Product - Exercise 25.1 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 25 Vector or Cross Product
Exercise 25.1 | Q 35 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find `|veca × vecb|`, if `veca = hati - 7hatj + 7hatk` and `vecb = 3hati - 2hatj + 2hatk`.


Find a unit vector perpendicular to each of the vector  `veca  + vecb` and `veca - vecb`, where `veca = 3hati + 2hatj + 2hatk` and `vecb = hati + 2hatj  - 2hatk`.


Show that `(veca - vecb) xx (veca + vecb) = 2(veca xx vecb)`.


Given that `veca.vecb = 0` and `veca xx vecb = 0` What can you conclude about the vectors `veca and vecb`?


Let the vectors `veca` and `vecb` be such that `|veca| = 3` and `|vecb| = sqrt2/3`, then `veca xx vecb` is a unit vector, if the angle between `veca` and `vecb` is ______.


Let `veca = 4hati + 5hatj - hatk`, `vecb  = hati - 4hatj + 5hatk` and `vecc = 3hati + hatj - hatk`. Find a vector `vecd` which is perpendicular to both `vecc` and `vecb and vecd.veca = 21`


If \[\vec{a} = 3 \hat { i } + 4 \hat { j } \text{ and }  \vec{b} = \hat { i  } + \hat{ j }  + \hat{ k } ,\]  find the value of \[\left| \vec{a} \times \vec{b} \right| .\]

 

Find a unit vector perpendicular to the plane containing the vectors  \[\vec{a} = 2 \hat{ i } + \hat{ j }  + \hat{ k } \text{ and }  \vec{b} = \hat{ i } + 2 \hat{ j }  + \hat{ k } .\]

 


Find the magnitude of \[\vec{a} = \left( 3 \hat{ k }  + 4 \hat{ j } \right) \times \left( \hat{ i }  + \hat{ j }  - \hat{ k }  \right) .\]

 

Find a vector of magnitude 49, which is perpendicular to both the vectors  \[2 \hat{ i }   + 3 \hat{ j }  + 6 \hat{ k }  \text{ and } 3 \hat{ i }  - 6 \hat{ j }  + 2 \hat{ k }  .\]

 


Find a vector whose length is 3 and which is perpendicular to the vector \[\vec{a} = 3 \hat{ i }  + \hat{ j  } - 4 \hat{ k }  \text{ and }  \vec{b} = 6 \hat{ i }  + 5 \hat{ j }  - 2 \hat{ k } .\]


Find the area of the parallelogram determined by the vector \[\hat{ i }  - 3 \hat{ j } + \hat{ k }  \text{ and }  \hat{ i }  + \hat{ j } + \hat{ k }  .\]

 


Find the area of the parallelogram whose diagonals are \[2 \hat{ i }  + 3 \hat{ j } + 6 \hat{ k } \text{ and }  3 \hat{ i }  - 6 \hat{ j }  + 2 \hat{ k } \]

 


\[\text{ If }  \left| \vec{a} \right| = 2, \left| \vec{b} \right| = 5 \text{ and }  \left| \vec{a} \times \vec{b} \right| = 8, \text { find }  \vec{a} \cdot \vec{b} .\]

 


Find the angle between two vectors \[\vec{a} \text{ and }  \vec{b}\] , if \[\left| \vec{a} \times \vec{b} \right| = \vec{a} \cdot \vec{b} .\]

 

if \[\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq 0,\]  then  show that \[\vec{a} + \vec{c} = m \vec{b} ,\]  where m is any scalar.

 
 

 


If  \[\vec{p} \text{ and }  \vec{q}\] are unit vectors forming an angle of 30°; find the area of the parallelogram having \[\vec{a} = \vec{p} + 2 \vec{q} \text{ and }  \vec{b} = 2 \vec{p} + \vec{q}\] as its diagonals.

 
 

 


If \[\vec{a} = 2 \hat{ i } - 3 \hat{ j  } + \hat{ k } , \vec{b} = -\hat{  i }  + \hat{ k } , \vec{c} = 2 \hat{ j }  - \hat{ k } \]  are three vectors, find the area of the parallelogram having diagonals \[\left( \vec{a} + \vec{b} \right)\]  and \[\left( \vec{b} + \vec{c} \right)\] .

 
 

The two adjacent sides of a parallelogram are \[2 \hat{ i  } - 4 \hat{ j }  + 5 \hat{ k }  \text{ and }  \hat{ i } - 2 \hat{ j }  - 3\hat{ k }  .\]\  Find the unit vector parallel to one of its diagonals. Also, find its area. 

 
 

Write the value  \[\left( \hat{ i }  \times \hat{ j }  \right) \cdot \hat{ k }  + \hat{ i }  \cdot \hat{ j }  .\]

 


If \[\vec{a} \text{ and }  \vec{b}\] are two vectors of magnitudes 3 and \[\frac{\sqrt{2}}{3}\]  espectively such that \[\vec{a} \times \vec{b}\] is a unit vector. Write the angle between \[\vec{a} \text{ and }  \vec{b} .\]

 
 
 

 


For any two vectors \[\vec{a}\] and \[\vec{b}\] , find \[\vec{a} . \left( \vec{b} \times \vec{a} \right) .\]

 
 
 
 

If   \[\vec{a} \text{ and }  \vec{b}\] are two vectors such that \[\left| \vec{a} \times \vec{b} \right| = \sqrt{3}\text{ and }  \vec{a} . \vec{b} = 1,\]  find the angle between.

 
 

 


If \[\vec{r} = x \hat{ i } + y \hat{ j }  + z \hat{ k }  ,\] then write the value of \[\left| \vec{r} \times \hat{ i }  \right|^2 .\]

 

 


If  \[\vec{c}\] is a unit vector perpendicular to the vectors \[\vec{a} \text{ and } \vec{b} ,\]  write another unit vector perpendicular to \[\vec{a} \text{ and }  \vec{b} .\]

 
 

 


Find the angle between two vectors \[\vec{a} \text{ and }  \vec{b}\] with magnitudes 1 and 2 respectively and when \[\left| \vec{a} \times \vec{b} \right| = \sqrt{3} .\]

 
 

Find a vector of magnitude \[\sqrt{171}\]  which is perpendicular to both of the vectors \[\vec{a} = \hat{ i } + 2 \hat{ j }  - 3 \hat{ k } \]  and  \[\vec{a} = \hat{ i } + 2 \hat{ j }  - 3 \hat{ k } \] . 

 
 

The vector \[\vec{b} = 3 \hat { i }+ 4 \hat {k }\] is to be written as the sum of a vector \[\vec{\alpha}\] parallel to \[\vec{a} = \hat {i} + \hat {j}\] and a vector \[\vec{\beta}\] perpendicular to \[\vec{a}\]. Then \[\vec{\alpha} =\]


If \[\vec{a,} \vec{b}\] represent the diagonals of a rhombus, then


If \[\vec{a} = 2 \hat{ i }  - 3 \hat{ j }  - \hat{ k }  \text{ and }  \vec{b} = \hat{ i } + 4 \hat{ j }  - 2 \hat{ k 
} , \text{ then } \vec{a} \times \vec{b}\]  is


If θ is the angle between the vectors \[2 \hat{ i }  - 2 \hat{ j}  + 4 \hat{ k }  \text{ and } 3 \hat{ i }  + \hat { j }  + 2 \hat{ k }  ,\]  then sin θ =

 

The value of λ for which the two vectors `2hati - hatj + 2hatk` and `3hati + λhatj + hatk` are perpendicular is ______.


Let `veca` and `vecb` be two unit vectors and θ is the angle between them, Then `veca + vecb` is a unit vector if-


Let `veca = hati + hatj, vecb = hati - hatj` and `vecc = hati + hatj + hatk`. If `hatn` is a unit vector such that `veca.hatn` = 0 and `vecb.hatn` = 0, then find `|vecc.hatn|`.


If `veca` and `vecb` are unit vectors inclined at an angle 30° to each other, then find the area of the parallelogram with `(veca + 3vecb)` and `(3veca + vecb)` as adjacent sides.


If the vector `vecb = 3hatj + 4hatk` is written as the sum of a vector `vec(b_1)`, parallel to `veca = hati + hatj` and a vector `vec(b_2)`, perpendicular to `veca`, then `vec(b_1) xx vec(b_2)` is equal to ______.


Let `veca = 2hati + hatj - 2hatk, vecb = hati + hatj`. If `vecc` is a vector such that `veca . vecc = \|vecc|, |vecc - veca| = 2sqrt(2)` and the angle between `veca xx vecb` and `vecc` is 30°, then `|(veca xx vecb) xx vecc|` equals ______.


Find the area of the parallelogram whose diagonals are `hati - 3hatj + hatk` and `hati + hatj + hatk`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×